110.202 – Calculus III

2/6/2017

Section 1.1

TA: David Li

1.1 Geometry of Euclidean Space

We'll start with a discussion of 2-D and 3-D euclidean space. In 2 dimensions we can represent space with a plane with coordinate axes. Points in the plane are represented by ordered pairs of real numbers (x_1, y_1) . We call x_1 the x-coordinate and y_1 the y-coordinate. In 3 dimensions, we'll also have a z-coordinate.

For notation, we say one-dimensional real space (the real line) is \mathbb{R} , two-dimensional real space (the set of ordered pairs of real numbers (x, y)) is \mathbb{R}^2 , and three-dimensional real space (the set of all ordered triples (x, y, z)) is \mathbb{R}^3 . We usually concentrate on these three, but we also have \mathbb{R}^n for *n*-dimensional space.

Typically, we're first introduced to vectors as a direction and magnitude. While this intuition works in low dimensions, it turns out to be more convenient to think of vectors as a directed line segment beginning at the origin and ending at some point (x, y, z) in space. We typically associate a vector with its ending point, and often write $\vec{a} = (a_1, a_2, a_3)$.

Standard basis vectors: Those of you with some linear algebra background will have seen this before, but it's basically a generalized way to talk about coordinate axes. In \mathbb{R}^3 , we have three special vectors along the x, y, z axes.

- $\vec{i} = (1, 0, 0)$ along the x-axis
- $\vec{j} = (0, 1, 0)$ along the y-axis
- $\vec{k} = (0, 0, 1)$ along the z-axis

(make note about orientation of axes)

We can represent any vector in \mathbb{R}^3 in terms of $\vec{i}, \vec{j}, \vec{k}$.

Equation of a line in the direction of a vector \vec{v} and starting from the endpoint of the vector \vec{a} is $\vec{\ell}(t) = \vec{a} + t\vec{v}$, where t takes on all real values.

Equation of a line through the points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $(x, y, z) = (x_1 + (x_2 - x_1)t, y_1 + (y_2 - y_1)t, z_1 + (z_2 - z_1)t)$, where again, t takes on all real values.