Section 1.1

TA: David Li

1.1 Geometry of Euclidean Space

We'll start with a discussion of 2-D and 3-D euclidean space. In 2 dimensions we can represent space with a plane with coordinate axes. Points in the plane are represented by ordered pairs of real numbers $\left(x_{1}, y_{1}\right)$. We call x_{1} the x-coordinate and y_{1} the y-coordinate. In 3 dimensions, we'll also have a z-coordinate.

For notation, we say one-dimensional real space (the real line) is \mathbb{R}, two-dimensional real space (the set of ordered pairs of real numbers (x, y)) is \mathbb{R}^{2}, and three-dimensional real space (the set of all ordered triples $(x, y, z))$ is \mathbb{R}^{3}. We usually concentrate on these three, but we also have \mathbb{R}^{n} for n-dimensional space.

Typically, we're first introduced to vectors as a direction and magnitude. While this intuition works in low dimensions, it turns out to be more convenient to think of vectors as a directed line segment beginning at the origin and ending at some point (x, y, z) in space. We typically associate a vector with its ending point, and often write $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$.

Standard basis vectors: Those of you with some linear algebra background will have seen this before, but it's basically a generalized way to talk about coordinate axes. In \mathbb{R}^{3}, we have three special vectors along the x, y, z axes.

- $\vec{i}=(1,0,0)$ along the x -axis
- $\vec{j}=(0,1,0)$ along the y -axis
- $\vec{k}=(0,0,1)$ along the z -axis
(make note about orientation of axes)
We can represent any vector in \mathbb{R}^{3} in terms of $\vec{i}, \vec{j}, \vec{k}$.
Equation of a line in the direction of a vector \vec{v} and starting from the endpoint of the vector \vec{a} is $\vec{\ell}(t)=\vec{a}+t \vec{v}$, where t takes on all real values.

Equation of a line through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $(x, y, z)=\left(x_{1}+\left(x_{2}-x_{1}\right) t, y_{1}+\right.$ $\left(y_{2}-y_{1}\right) t, z_{1}+\left(z_{2}-z_{1}\right) t$, where again, t takes on all real values.

