Section 1.2

TA: David Li

1.2 Inner Product, Length, Distance

Inner Product

Suppose we have two vectors \vec{a}, \vec{b} in \mathbb{R}^{3}, and we want to understand the angle between them.
Definition 1 If $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$, then the inner product of \vec{a} and \vec{b}, denoted $\vec{a} \cdot \vec{b}$, is equal to $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.

Note that the inner product is a scalar!
The following properties are true of the inner product

- a $a \cdot a \geq 0$, and $a \cdot a=0$ if and only if $a=0$
- For a scalar $c, c \vec{a} \cdot \vec{b}=\vec{a} \cdot c \vec{b}=c(\vec{a} \cdot \vec{b})$.
- For three vectors $\vec{a}, \vec{b}, \vec{c}, \vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
- $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$.

By the Pythagorean theorem, the length of a vector $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ is equal to $\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$. We denote this by $\|\vec{a}\|$ and call it the norm of \vec{a}. Note that $\|\vec{a}\|=(\vec{a} \cdot \vec{a})^{1 / 2}$.

Unit Vectors

Units with norm 1 are called unit vectors. Note that $\vec{i}, \vec{j}, \vec{k}$ are unit vectors. We can transform any vector \vec{a} into a unit vector by dividing it by $\|a\|$. The vector $\vec{a} /\|\vec{a}\|$ is known as a normalized vector.

Angle Between Vectors

Let a, b be two vectors in \mathbb{R}^{3}, and let $\theta \in[0, \pi]$ be the angle between them. Then $a \cdot b=\|a\|\|b\| \cos \theta$. This fact follows from application of the law of cosines.

Inequalities

Cauchy-Schwarz:
For any two vectors a, b, we have

$$
|a \cdot b| \leq\|a\|\|b\|,
$$

and equality holds when a is a scalar multiple of b or one of them is zero.
Triangle Inequality:
For any two vectors a, b, we have $\|a+b\| \leq\|a\|+\|b\|$.

Orthogonal Projection

The projection of a vector u onto a vector v is a vector in the direction of v, and, specifically, is the vector $\operatorname{proj}_{v}(u)=\frac{u \cdot v}{\|v\|^{2}} v$.

