110.202 – Calculus III

2/6/2017

Section 1.2

TA: David Li

1.2 Inner Product, Length, Distance

Inner Product

Suppose we have two vectors \vec{a}, \vec{b} in \mathbb{R}^3 , and we want to understand the angle between them.

Definition 1 If $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ and $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$, then the inner product of \vec{a} and \vec{b} , denoted $\vec{a} \cdot \vec{b}$, is equal to $a_1b_1 + a_2b_2 + a_3b_3$.

Note that the inner product is a scalar! The following properties are true of the inner product

- $a \cdot a \ge 0$, and $a \cdot a = 0$ if and only if a = 0
- For a scalar $c, \ c\vec{a} \cdot \vec{b} = \vec{a} \cdot c\vec{b} = c(\vec{a} \cdot \vec{b}).$
- For three vectors $\vec{a}, \vec{b}, \vec{c}, \vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.

By the Pythagorean theorem, the length of a vector $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ is equal to $\sqrt{a_1^2 + a_2^2 + a_3^2}$. We denote this by $\|\vec{a}\|$ and call it the norm of \vec{a} . Note that $\|\vec{a}\| = (\vec{a} \cdot \vec{a})^{1/2}$.

Unit Vectors

Units with norm 1 are called unit vectors. Note that $\vec{i}, \vec{j}, \vec{k}$ are unit vectors. We can transform any vector \vec{a} into a unit vector by dividing it by ||a||. The vector $\vec{a}/||\vec{a}||$ is known as a normalized vector.

Angle Between Vectors

Let a, b be two vectors in \mathbb{R}^3 , and let $\theta \in [0, \pi]$ be the angle between them. Then $a \cdot b = ||a|| ||b|| \cos \theta$. This fact follows from application of the law of cosines.

Inequalities

Cauchy-Schwarz: For any two vectors a, b, we have

 $|a \cdot b| \le ||a|| ||b||,$

and equality holds when a is a scalar multiple of b or one of them is zero. Triangle Inequality: For any two vectors a, b, we have $||a + b|| \le ||a|| + ||b||$.

Orthogonal Projection

The projection of a vector u onto a vector v is a vector in the direction of v, and, specifically, is the vector $\operatorname{proj}_{v}(u) = \frac{u \cdot v}{\|v\|^2} v$.