Final Exam Practice Problems

Section: 3 (David Li)
Most of these problems are adapted from final exams from MAT203 (Advanced Multivariable Calculus) at Princeton University.

1. F06-07 \#1

$$
f(x, y)=x^{2}-4 x+y^{2}-4 y+10
$$

(a) Find the critical points of f.
(b) Find the maximum and minimum of f subject to $x^{2}+y^{2}=25$.
(c) Find the maximum and minimum of f subject to $x^{2}+y^{2} \leq a$. Explain how the answer depends on the value of a.
2. F02-03 \#1 Find and classify the critical points of $z=\left(x^{2}-y^{2}\right) e^{\left(-x^{2}-y^{2}\right) / 2}$.
3. S05-06 \#6 Find the local and global extrema and their function values of the function $f(x, y, z)=x y+y z+x z$ in the closed unit ball $B=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
4. F05-06 \#1 Let γ be the curve in the $x y$-plane defined by

$$
1=\sqrt{x}+\sqrt{y / 8}, x, y \geq 0 .
$$

(a) Sketch the curve.
(b) Compute the tangent line at the point $\left(\frac{1}{4}, 2\right)$.
(c) Find the distance from γ to the origin.
5. S04-05 \#2 Find the point on the surface $z^{2}-x y=1$ nearest to the origin.
6. S02-03 \#2 Use Lagrange multipliers to show that if $\sum_{i=1}^{n} x_{i}^{2}=1$ then $x_{1}^{2} x_{2}^{2} \cdots x_{n}^{2} \leq 1 / n$.

Conclude that the geometric mean of n positive integers is always less than or equal to the arithmetic mean: i.e. if $a_{1}, a_{2}, \ldots, a_{n}>0$, then

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n} .
$$

7. Compute the limits (if they exist)
(a) F07-08 \#2

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{2}+x^{2} y}{x^{4}-y^{2}+x y^{2}}, \lim _{(x, y) \rightarrow(0,0)} \frac{e^{-y^{2}}-e^{x^{2}}}{x^{2}+y^{2}} .
$$

(b) F06-07 \#3b

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y^{2}}{x^{2}+y^{2}}, \lim _{(x, y) \rightarrow(0,0)} \frac{\log \left(1+x^{2}+y^{2}\right)}{x^{2}+y^{2}} .
$$

8. F03-04 \#2 Evaluate the integral

$$
\iiint_{\mathbb{R}^{3}} \frac{d x d y d z}{\left[1+\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}\right]^{3 / 2}} .
$$

9. S07-08 \#5 Let $\mathbf{F}(x, y, z)=-10 \mathbf{r} / r^{3}$ be a vector field on $\mathbb{R}^{3}-(0,0,0)$ where $\mathbf{r}=(x, y, z)$ and $r(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.
(a) Calculate $\operatorname{div}(\mathbf{F})$.
(b) Is $\mathbf{F}=\operatorname{curl}(\mathbf{G})$ for some vector field \mathbf{G} defined on $\mathbb{R}^{3}-(0,0,0)$?
10. F03-04 \#3b For the following integral, sketch the region of integration, interchange the order, and evaluate the integral in the new order.

$$
\int_{1}^{4} \int_{1}^{\sqrt{x}} x^{2}+y^{2} d y d x
$$

11. F07-08 \#8

(a) The Laplace operator ∇^{2} on \mathbb{R}^{3} is defined by

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

in Cartesian coordinates. Write ∇^{2} in terms of cylindrical coordinates (i.e. in terms of partial derivatives with respect to r, θ, and z.)
(b) (Also S05-06 \#5) A C^{2} function is said to be harmonic if $\nabla^{2} f(x, y, z)=0$ for all x, y, z. Suppose f and g are harmonic functions. Show that

$$
\int_{S}(f \nabla g-g \nabla f) \cdot d \mathbf{S}=0
$$

for any sphere S (oriented however you wish) in \mathbb{R}^{3}.
12. S05-06 \#4 Let $T(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$ and let D^{*} be the region given by $u \geq 0, v \geq$ $0, u^{2}+v^{2} \leq 1$. Let D be the image of D^{*} under T.
(a) Show that T is a one-to-one function from D^{*} to D.
(b) Compute

$$
\iint_{D}\left(x^{2}+y^{2}\right)^{-1 / 2} d x d y
$$

13. F02-03 \#4
(a) Find a linear transformation taking the square $[0,1] \times[0,1]$ to the parallelogram P with vertices at $(0,0),(-1,2),(3,1),(2,3)$.
(b) Compute

$$
\iint_{P}\left(x^{2}+y^{3}\right) d x d y
$$

14. S03-04 \#1

(a) Let $\Phi(u, v)=(2 u-v, u+v)$. What is the image of Φ under the set D^{*}, where D^{*} is the unit square $[0,1] \times[0,1]$?
(b) Compute $\iint_{D} x^{2}-y d y d x$ where D is the answer to part (a).
15. F01-02 \#5 If $\mathbf{F}=2 x y^{2} e^{x^{2}} \mathbf{i}+2 y e^{x^{2}} \mathbf{j}+z \mathbf{k}$, and C is parameterized by $\mathbf{c}:[0,1] \mapsto \mathbb{R}^{3}$ defined by $\mathbf{c}(t)=\left(\cos (\pi t)-1, \sin (\pi t), t^{2}+t+1\right)$, compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{S}$.
16. S04-05 \#4 Find the area of the surface defined by $z=x^{2}+2 y^{2}, x^{2}+4 y^{2} \leq 1$.
17. F01-02 \#7 Let W be the region in the first octant bounded by the planes $y=0, z=0, x=y$ and by the unit sphere $x^{2}+y^{2}+z^{2}=1$.
(a) Compute

$$
\iiint_{W} e^{-\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V .
$$

(b) If S is the boundary of W and $\mathbf{F}=\left(3 x-z^{4}\right) \mathbf{i}-\left(x^{2}-y\right) \mathbf{j}+x y^{2} \mathbf{k}$, compute the surface integral

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

18. S03-04 \#3 Let C be the triangle with vertices at $(0,0),(1,0),(0,1)$ oriented in a counterclockwise direction. Evaluate

$$
\int_{C} \frac{e^{x}}{e^{x}+y^{2}} d x+\left(x+\frac{2 y}{e^{x}+y^{2}}\right) d y
$$

19. F01-02 \#6 Let C be the boundary of the rectangle with sides $x=1, y=2, x=3, y=3$. Evaluate

$$
\int_{C} \frac{2 y+\sin x}{1+x^{2}} d x+\frac{x+e^{y}}{1+y^{2}} d y
$$

20. S02-03 \#5 Let K be the closed unit disc defined by $x^{2}+y^{2} \leq 1$, and let D be the region outside K which is bounded on the left by $y^{2}=2(x+2)$ and on the right by $x=2$. Let ∂D be the boundary of D. Evaluate

$$
\int_{\partial D}\left(-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y\right) .
$$

21. $\mathbf{S 0 2 - 0 3} \# \mathbf{6}$ Let S be the unit sphere defined by $x^{2}+y^{2}+z^{2}=1$, and let $\mathbf{F}(x, y, z)=$ $e^{x^{2}+\sin (z)} \mathbf{i}+\sinh (\sin (y)+z) \mathbf{j}+z \mathbf{k}$. Evaluate the surface integral

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

22. S04-05 \#7 Let Σ be the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ which lies above the $x y$-plane, oriented with upward normal. Find the flux of $\mathbf{F}=\left(x^{3}+y^{2} \cos z, y^{3}+e^{x} \sin z, z^{3}-1\right)$ across Σ.
23. F05-06 \#7 Let S be the surface parameterized by the function

$$
T(\theta, \phi)=((3+\cos (\phi)) \cos (\theta),(3+\cos (\phi)) \sin (\theta), \sin (\phi)),
$$

where $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$.
(a) Compute the tangent plane P of S at the point $T\left(0, \frac{\pi}{4}\right)$.
(b) Find all points on the surface S with tangent plane parallel to P.
(c) If S has the orientation induced by the parameterization T, and $\mathbf{F}(x, y, z)=\left(x y^{2}, x \sinh (x) e^{x}-\frac{y^{3}}{3}+y, 2-z\right)$, compute

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

24. S03-04 \#4 Let Σ be the portion of the surface $z=4-\left(x^{2}+y^{2}-1\right)^{2}$ which lies above the $x y$-plane, oriented with an upward-pointing normal vector. Use Gauss' Theorem to evaluate

$$
\iint_{\Sigma}\left(e^{y} \cos z \mathbf{i}+\left(y+e^{x} \cos z\right) \mathbf{j}+\mathbf{k}\right) \cdot d \mathbf{S} .
$$

25. Let $\mathbf{F}(x, y, z)=\left(x\left(1-x^{980} y^{1000} z^{2002}\right), y+e^{-y x^{482}}, z\right)$, where Ω is a solid region in \mathbb{R}^{3}. Suppose the flux of the vector field \mathbf{F} outward across $\partial \Omega$ is greater than or equal to 12 . Show that Volume $(\Omega) \geq 4$.
26. S01-02 \#3 For what A, B is the vector field

$$
\mathbf{F}=(2 A+B) e^{x} \mathbf{i}+\left(A e^{x}+z \cos y\right) \mathbf{j}+B \sin y \mathbf{k}
$$

conservative? Find the potential function when it exists.
27. F06-07 \#7
(a) Is the vector field

$$
\mathbf{F}=\left(e^{x} \sin x+3 x^{2} y z, x^{3} z+\tan z, e^{x} \cos z+x^{3} y+y \sec ^{2} z\right)
$$

conservative? If so, find the potential function. Then compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}
$$

where C is the curve parameterized by $\mathbf{c}(t)=\left(\frac{4 \sqrt{2}}{\pi} \cos t, \sqrt{2} \sin t, t\right)$ for $0 \leq t \leq \pi / 4$.
(b) Consider two vector fields \mathbf{F} and \mathbf{G}. Answer the following questions, with justification.
i. If \mathbf{F} and \mathbf{G} are both not conservative, is it possible that $\mathbf{F}-\mathbf{G}$ is conservative?
ii. If \mathbf{F} and \mathbf{G} are both conservative, is it possible that $\mathbf{F}-\mathbf{G}$ is not conservative?
iii. If \mathbf{F} is conservative but \mathbf{G} is not, is it possible that $\mathbf{F}-\mathbf{G}$ is conservative?
iv. Assuming $\mathbf{F}=\nabla f$ in \mathbb{R}^{3} for f at least class C^{1}, and consider a curve C parameterized by $\mathbf{c}(t)$ satisfying $\mathbf{c}^{\prime}(t)=\mathbf{F}(\mathbf{c}(t))$ (a flow line). Can it occur that C lies on a level surface of f ? If yes, when?
28. S07-08 \# 3 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(u, v)=(5 u-v, 2 u+3 v)$. Let D be the region $0 \leq u \leq 1,0 \leq v \leq 2$ and let $R=T(D)$.
(a) Sketch R.
(b) Compute

$$
\iint_{R}\left(x^{2}+y\right) d x d y
$$

