Section \#5

TA: David Li
Covered: Exam prep, $\S 2.4, \S 2.5, \S 2.6$

Exam Preparation

- Old Princeton problems on my website.
- 2D limit review - Polar/spherical coordinates:

$$
\begin{gathered}
L=\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2} y+x^{2} y^{3}\right)}{x^{2}+y^{2}} \\
\left|\cos ^{2}(\theta) \sin (\theta)+r \cos ^{2}(\theta) \sin ^{3}(\theta)\right| \leq\left|\cos ^{2}(\theta) \sin (\theta)\right|+r\left|\cos ^{2}(\theta) \sin ^{3}(\theta)\right| \leq 1+r \\
\left|r\left(\cos ^{2}(\theta) \sin (\theta)+r \cos ^{2}(\theta) \sin ^{3}(\theta)\right)\right| \leq r(1+r)
\end{gathered}
$$

Cannot use L'Hôpital's rule:

$$
L=\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{2 x^{2} y \cos (z)}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} x \frac{2 x y}{x^{2}+y^{2}}
$$

Since $0<\frac{|2 x y|}{x^{2}+y^{2}} \leq 1$ when $x, y \neq 0$. Then use squeeze theorem and get $L=0$.

- Exam topics (nonexhaustive list): Vectors, Matrices/Determinants, Coordinate systems, Limits, Continuity, Derivatives (incl. Chain Rule), Tangent Planes, Paths and Curves, Gradient \& Directional Derivative (maybe)
- $\S 2.3 \# 17$ Let P be the tangent plane to the graph of $g(x, y)=8-2 x^{2}-3 y^{2}$ at the point $(1,2,-6)$. let $f(x, y)=4-x^{2}-y^{2}$. Find the point on graph of f with tangent plane parallel to P.
Tangent plane is $z-f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.

2.4 - Paths and Curves

HW: 2,5, $8,18,24$

- Paths in $\mathbb{R}^{n} c:[a, b] \rightarrow \mathbb{R}^{n}$ and component functions $c(t)=(x(t), y(t), z(t))$.
- Velocity vector $c^{\prime}(t)=\lim _{h \rightarrow 0} \frac{c(t+h)-c(t)}{h}$. Or $c^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
- $c^{\prime}(t)$ is the tangent vector to $c(t)$ at time t, If C is a curve traced out by c and if $c^{\prime}(t) \neq 0$ then $c^{\prime}(t)$ is a vector tangent to C at $c(t)$.
- If $c(t)$ is a path and $c^{\prime}\left(t_{0}\right) \neq 0$ then the tangent line is at the point $c\left(t_{0}\right)$ is $\ell(t)=c\left(t_{0}\right)+(t-$ $\left.t_{0}\right) c^{\prime}\left(t_{0}\right)$

2.5 - Derivative Properties

HW: $3,5,6,8,12,18$
Chain Rule: Let $x=x(t)$ and $y=y(t)$ be differentiable at t and suppose that $z=f(x, y)$ is differentiable at the point $(x(t), y(t))$. Then $z=f(x(t), y(t))$ is differentiable at t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} .
$$

Example: Let $z=x^{2} y-y^{2}$ where x and y are parametrized as $x=t^{2}$ and $y=2 t$.

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =(2 x y)(2 t)+\left(x^{2}-2 y\right)(2) \\
& =\left(2 t^{2} \cdot 2 t\right)(2 t)+\left(\left(t^{2}\right)^{2}-2(2 t)\right)(2) \\
& =8 t^{4}+2 t^{4}-8 t \\
& =10 t^{4}-8 t .
\end{aligned}
$$

Let $x=x(u, v)$ and $y=y(u, v)$ have first-order partial derivatives at the point (u, v) and suppose that $z=f(x, y)$ is differentiable at the point $(x(u, v), y(u, v))$. Then $f(x(u, v), y(u, v))$ has first-order partial derivatives at (u, v) given by

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} .
\end{aligned}
$$

Let $z=e^{x^{2} y}$, where $x(u, v)=\sqrt{u v}$ and $y(u, v)=\frac{1}{v}$. Then

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& =\left(2 x y e^{x^{2} y}\right)\left(\frac{\sqrt{v}}{2 \sqrt{u}}\right)+\left(x^{2} e^{x^{2} y}\right)(0) \\
& =2 \sqrt{u v} \cdot \frac{1}{v} e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot \frac{\sqrt{v}}{2 \sqrt{u}}+(\sqrt{u v})^{2} \cdot e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot(0) \\
& =e^{u}+0 \\
& =e^{u} \\
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \\
& =\left(2 x y e^{x^{2} y}\right)\left(\frac{\sqrt{u}}{2 \sqrt{v}}\right)+\left(x^{2} e^{x^{2} y}\right)\left(-\frac{1}{v^{2}}\right) \\
& =2 \sqrt{u v} \cdot \frac{1}{v} e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot \frac{\sqrt{u}}{2 \sqrt{v}}+(\sqrt{u v})^{2} e^{(\sqrt{u v})^{2} \cdot \frac{1}{v}} \cdot\left(-\frac{1}{v^{2}}\right) \\
& =\frac{u}{v} e^{u}-\frac{u}{v} e^{u} \\
& =0 .
\end{aligned}
$$

2.6 - Gradient and Directional Derivative

HW: 1, 6, 9, 14, 22

- Directional Derivative
- Direction of Fastest Increase
- Tangent Planes to Level Surfaces
- Gradient Vector Field

