Section \#7

TA: David Li
Covered: $\S 3.4, \S 4.1, \S 4.2$

3.4 - Constrained Extrema and Lagrange Multipliers

- When constrained to a surface, a function attains its global maximum and minimum (these are also local max $/ \mathrm{min}$). Then, Lagrange Multiplier Thm says if a function has a local maximum or minimum at a point x_{0}, then there's some real number λ such that $\nabla f\left(x_{0}\right)=\lambda \nabla g\left(x_{0}\right)$. In general, if $\nabla f\left(x_{0}\right)=\lambda \nabla g\left(x_{0}\right)$ is true, then x_{0} is a critical point.
- Example 1: Find the dimensions of the box with largest volume if the total surface area is exactly $64 \mathrm{~cm}^{2}$.
- Example 2: Find the maximum and minimum values of $f(x, y)=4 x^{2}+10 y^{2}$ on the disk $x^{2}+y^{2} \leq 4$. (Note that this is an inequality!)
- Example 3: Find the maximum and minimum of $f(x, y, z)=4 y-2 z$ subject to the constraints $2 x-y-z=2$ and $x^{2}+y^{2}=1$.

4.1 - Acceleration and Newton's Second Law

HW: 21, 22

- Recall that if we have a path $\vec{c}(t)$, then its velocity is $\vec{v}(t)=\vec{c}^{\prime}(t)$.
- Similarly, the velocity is $\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{c}^{\prime \prime}(t)$. However, the image of a C^{1} path is not always smooth - so \vec{a} is not always defined for a C^{1} function.
- We say a differentiable path \vec{c} is regular if at all $t, c^{\prime}(t) \neq 0$.
- Newton's second law: Net force acting on a particle at a time t is equal to its mass and acceleration at t. Mathematically, this is $\vec{F}(c(t))=m \vec{a}(t)$
- Circular motion (in 2 dimensions) of mass m at constant speed s in a circle of radius r_{0} $\vec{r}(t)=\left(r_{0} \cos \left(\frac{s}{r_{0}} t\right), r_{0} \sin \left(\frac{s}{r_{0}} t\right)\right)$
- $\frac{s}{r_{0}}$ is denoted by ω and is called frequency. Then, $\vec{a}(t)=-\omega^{2} \vec{r}(t)$ is the acceleration, and $m \vec{a}$ is the centripetal force.

4.2 - Arc Length

HW: 2, 8, 10, 12

- Intuitively, length of a path $\mathbf{c}(t)$ is speed times time, but speed is not constant. Recall speed is $\left\|\mathbf{c}^{\prime}(t)\right\|$. Then, the length of a path $\mathbf{c}(t)$ from time t_{0} to t_{1} is

$$
\int_{t_{0}}^{t_{1}}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{t_{0}}^{t_{1}} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

- You can also think about the instantaneous displacement of a particle along a path $\mathbf{c}(t)=$ $x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ as

$$
d \mathbf{s}=\left[\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}\right] d t
$$

and its length is

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t .
$$

- This arc length differential is useful since it simplifies the arc length to $L=\int_{t_{0}}^{t_{1}} d \mathbf{s}$.
- Arc length reparameterization - arc length function $s(t)$ associated with a path $\mathbf{c}(t)$ is

$$
s(t)=\int_{0}^{t}\left\|\mathbf{c}^{\prime}(u)\right\| d u
$$

Using this, we can reparameterize our path function by arc length s instead of t.

- Example 4: Find the length of the curve $\mathbf{c}(t)=(2 t, 3 \sin (2 t), 3 \cos (2 t))$ on the interval $t \in[0,2 \pi]$.
- Example 5: Find the arc length function of the path $\mathbf{c}(t)=(2 t, 3 \sin (2 t), 3 \cos (2 t))$.
- Example 6: What is our position on the curve $\mathbf{c}(t)$ after traveling a distance $\frac{\pi \sqrt{10}}{3}$ from our position at $t=0$?

