
Predicting Stock Prices using Recurrent Neural Networks

Gary Qian Benjamin Hoertnagl-Pereira David Li

Abstract

Correctly predicting stock price movements is an incredibly lucrative problem. Traditional approaches
for prediction involve extensive market research and models with hand crafted signals. In this project, we
investigate the suitability of recurrent neural networks for analyzing and predicting stock prices purely as
raw time series data. RNNs are specialized for processing sequential data, and application to stock prices
is a natural fit. For this project, we test various windowing techniques, augmentations, and “cascade” style
transfer learning to attempt to develop insight into worthwhile techniques for stock prediction.

1 Introduction

Stock markets are hard to predict. There are many
factors that drive supply and demand, from market-
wide effects from government changes in inflation
policy to localized effects from events such as new
product releases. Traditional traders consider price
changes as indicator signals for future price move-
ment; however, their actions can in turn which can
then trigger price changes, leading to complex feed-
back systems.

Recently, there has been significant work in apply-
ing machine learning to time series data in the form of
recurrent neural networks. Current research includes
phoneme recognition in speech audio [3], music com-
position [6], and stock trend prediction [5].

Neural networks can be seen as a nonlinear func-
tion approximator. In this particular setting, we can
give the price of the stock as a function of time. In
particular, if vi is the price of a stock at time i, us-
ing the n most recent share values, we are trying to
compute f(vt, vt−1, . . . , vt−n+1) = vt+1. To examine
ways to solve the stock price prediction problem, we
make some simplifying assumptions and run experi-
ments to empirically validate their performance.

We will discuss our data collection and processing
in section 2, our methodology and results in section
3, and conclusions in section 4.

2 Data Collection

We used the NASDAQ100 dataset, which provides
stock prices on 1 minute intervals for 104 stocks on
NASDAQ. The data covers 191 days from July 26,
2016 to April 28, 2017. We also collected intra-day

data from the Bloomberg Terminal, in order to verify
and augment our NASDAQ dataset. We used a ran-
dom 70-20-10 split on the data to create our train,
validation, and test datasets, respectively.

2.1 Dataset Creation

In particular, the NASDAQ100 set had roughly 5-
10% of the data missing in certain timepoints. These
data points were filled in by pulling the data from
Bloomberg. We realized that the NASDAQ100
dataset format and size was sufficient for the experi-
ments we ran. We used a 70-20-10 split for our train,
validation, and test datasets.

One interesting consideration that needed to be
made was the ordering in which were to pass our win-
dowed data to our model. For most problems, it is
common to assume that data i.i.d. from some under-
lying distribution, so it is common to shuffle samples
from the dataset. However, this simplifying assump-
tion is to strong to be made for sequential stock data,
especially since there is such high correlation between
prices at different timesteps. Thus, we decide to keep
the windows in continuous ordering.

2.2 Preprocessing

In order to ensure that predictions are not biased to-
wards specific stocks, it is required to normalize data.
Normalization could be considered for the entire price
history for a given stock, or instead for the specific
windows of the prices. Given our focus on generaliza-
tion to arbitrary stock data, we normalize each win-
dow by subtracting the window mean and dividing
by variance such that (µ = 0, σ = 1). This transfor-

1

http://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html


mation eliminates the impact of the actual value of
the stock and has variance stabilizing effects.

We used 12 of the 104 stocks for our actual training.
Due to hardware limitations, 12 stocks (with augmen-
tations) was the most data that would fit in the GPU
memory (3GB GTX 1060) while still allowing a large
enough LSTM model in memory. We attempted us-
ing Google Colab, but due to shared GPU instances,
we could not reliably get access to the full GPU RAM
space. In efforts to keep all of our run consistent to
compare, we decided to use the abridged dataset.

2.3 Windowing Techniques

A few of the key parameters we explored for window-
ing were the windows size as well as augmentation
through overlapping adjacent windows. To focus in
on interesting window scales and overlap amounts, we
did preliminary experimentation.

We found that small windows of around 10 time
points were too small to produce any comprehensible
result beyond noise, and very large batches were not
well generalized. After the early runs, we settled on
trying everything with windows of 64 and 128. These
windows sizes produced.

With regard to overlap, sliding the window by one
minute every window hugely increased the data size,
but did not perform any better than much larger
steps (smaller overlap). We did notice that the aug-
mentation process resulted in different behavior in
both validation and training loss, but the difference
was not enough to warrant a full sweep. Therefore,
we decided to explore the effects of half-window-size
(50%) overlap versus no overlap.

The final windowing approach was a full explo-
ration over the following parameters: [64, 128] win-
dow size, [0%, 50%] overlap, and [1, 2, 3, 4, 8, 16, 32]
future prediction time steps.

3 Approach and Results

The bulk of the experiments were run with a rela-
tively simple two layer LSTM, each layer with 64
hidden units, and two fully connected linear layers
(64 × 64 and 64 × 1) to transform the hidden states
from the LSTM to a real valued stock price.

This model performed relatively well with low
chance of overfitting on most of the datasets we used.
Deeper models tended to greatly overfit on training
without improving (and often worsening) the valida-
tion loss. We used 64 hidden nodes, which was able

to achieve reasonable performance on the data. Ad-
ditional hidden layers did not improve the validation
loss, led to behavior that we suspected was rote mem-
orization, and greatly increased the run times of our
model.

We chose the ADAM optimizer because it was one
of the only optimizers that were able to produce con-
sistent diminishing loss on both the training and val-
idation data. SGD resulted in very smooth descent
of loss but reached an asymptote that was very high.
Initially, ADAM resulted in large spikes in our loss,
but this was mitigated by increasing the epsilon value
to 10−6 instead of the default 10−8.

To test our model, we performed a random 70-30
split on the stock data. 70% was used as training
data, and 30% was used as validation.

For Many-To-One prediction, each of the param-
eter combinations were run with both a randomly
initialized neural network as well as a transferred
“cascading” neural network, resulting in a total of
56 neural networks for 400 epochs each. We looked
into early stopping, but it did not seem to matter as
running the network for longer did not significantly
increase or decrease any of the metrics once it reached
the asymptotic values.

3.1 Many-To-One

First, we wanted to explore the results of predicting
single future values. We configured the output of the
linear layers to output to a dimension of 1. Then, we
selected the ground truth y vector to be 1, 2, 3, 4,
8, and 32 time steps (minutes) into the future (Note:
the loss for 32, 16, and 8 are not plotted on the same
plots due to the drastically different scale of the loss.
We have included these values separately). We ex-
pected that the LSTM would perform very well on the
shorter future steps, and worse on the larger steps.
We also repeated the experiments with windows of
64 and 128, each with both no overlap augmentation
and with 50% overlap augmentation (Figure 1).

These experimental future step parameters were
arrived at through a preliminary exploration of in-
teresting timescales to test. We found that at time
steps past 32 minutes into the future, the LSTMs
were unable to predict with any reasonable accuracy.

We found that the LSTM was able to arrive at very
small loss at only 1 minute in the future. This loss
increased at steady intervals as the prediction time
steps increased.

2



0 50 100 150 200 250 300 350 400
Epoch

0.0001

0.0002

0.0003

0.0004

0.0005
No

rm
al

ize
d 

M
SE

Loss without transfer learning
Window Size 128, Overlap 64

1 min
2 min
3 min
4 min
1 min
2 min
3 min
4 min

0 50 100 150 200 250 300 350 400
Epoch

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

No
rm

al
ize

d 
M

SE

Loss with transfer learning
Window Size 128, Overlap 64

1 min
2 min
3 min
4 min
1 min
2 min
3 min
4 min

0 50 100 150 200 250 300 350 400
Epoch

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

No
rm

al
ize

d 
M

SE

Loss without transfer learning
Window Size 64, Overlap 32

1 min
2 min
1 min
2 min

0 50 100 150 200 250 300 350 400
Epoch

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

No
rm

al
ize

d 
M

SE

Loss with transfer learning
Window Size 64, Overlap 32

1 min
2 min
1 min
2 min

Figure 1: Solid lines are training loss and dotted lines
are validation loss. Performance of 128min windows
with 64min overlap and both transfer and no trans-
fer, as well as 64min windows with 32min overlap
with both transfer and no transfer. +8, +16, +32
predictions omitted

3.1.1 Many-To-One Cascade (Transfer)

To improve performance of predicting more distant
future values, we attempted to use transfer learning.
The weights from the previous smaller future time
step were used to initialize the model for the current
larger future time step. For example, we initialized
the model for 4 minute prediction with the weights
from 3 minute prediction. This was continued for
each of the time steps we explored, producing a “cas-
cading” model that is continuously used to initialize
the next one.

The theory is based on the idea that by initializing
the model with the weights of previous smaller pre-
dictions, the model may have both a better start than
random initialization as well as potentially avoid lo-
cal minima that previous models have encountered.
In addition, even if it does not improve absolute loss,
it is possible that we may be able to reach a similar
loss faster than with a randomly initialized model.

After running both randomly initialized models
and transferred models, we found that the transferred
models were indeed able to attain similar training and
validation loss to the random models faster, and the
transferred models actually attained lower loss than
the random models.

We also see the introduction of spikes and regres-
sions in the performance in the transferred models.
These spikes are likely less extreme versions of the
spikes we encountered earlier in Adam optimizers.
Overall, the models were able to recover rapidly from
these disruptions.

The transferred and random models both con-
verged to remarkably close validation and training
losses and we believe that these losses are the bound
by the architecture we used. However, it was inter-
esting to note that the transfer model was almost im-
mediately able to jump to the lowest validation losses
at epoch 1. This is useful because transfer learning
can be applied to increasing timescales and reduce
training from hundreds of epochs to potentially a few
dozen. This can lead to massive computational sav-
ings when running the networks on larger datasets.

3.1.2 Overlap Effects

Overlapped data saw similar loss when compared to
non-overlap data on the small future time steps of 1
and 2 minutes. As the time steps increased to 3, 4,
8, 16, and 32, the overlap validation loss was signifi-
cantly lower than non-overlapped versions (Figure 2).
Since predicting further in the future is a harder task,

3



0 50 100 150 200 250 300 350 400
Epoch

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

No
rm

al
ize

d 
M

SE

Loss without transfer learning
Window Size 128, Overlap 0

1 min
2 min
3 min
4 min
1 min
2 min
3 min
4 min

0 50 100 150 200 250 300 350 400
Epoch

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

No
rm

al
ize

d 
M

SE

Loss without transfer learning
Window Size 64, Overlap 0

1 min
2 min
3 min
4 min
1 min
2 min
3 min
4 min

Figure 2: Effect of no overlap between windows for
128min and 64min windows. Solid lines are training
loss and dotted lines are validation loss. +8, +16,
+32 predictions omitted

we believe that the augmentation of the data only re-
ally had the impact visible on the harder tasks. The
overlapping adds another recurrent component to the
data outside of the LSTMs of the network itself.

Overall, we found that the overlapping augmenta-
tion improves performance at the cost of increased
training times as it increases the dataset size signif-
icantly. However, the effects were only apparent at
larger future time steps.

3.1.3 Window Size

The effects of 64 vs 128 window size was fairly con-
sistent across the board. We saw consistently lower
validation and training losses with and without over-
lapping. The increased window size likely performed
better due to a larger input “feature” size and each
iteration was able to learn from more data points.
Larger window sizes had similar performances to 128,
which is why we decided to focus on 128 as our pri-
mary exploration window size for hardware optimiza-
tion reasons.

20 21 22 23 24 25

t+k minute prediction

2 14

2 12

2 10

2 8

2 6

2 4

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Accuracy vs Prediction Distance k
Window 128, Overlap 64
Window 128, Overlap 0
Window 64, Overlap 32
Window 64, Overlap 0
Window 128, Overlap 64, Cascaded
Window 64, Overlap 32, Cascaded
Baseline

Figure 3: Prediction accuracy of various models for
f(vt, vt−1, . . . , vt−n+1) = vt+k versus k. The black
line represents the baseline for comparison and for
small k, our models beat the baseline.

3.1.4 Performance vs Baseline

To compare with a more real world scenario, we calcu-
lated a baseline performance by taking the final value
of the input window and using it as the prediction for
the future.

We found that our LSTM models actually per-
formed better than this simple guessing scheme for
the smaller timescales. For predictions 1-4 minutes
into the future, our loss from the truth is better than
our baseline. After 4 minutes, we see large increases
in the loss, and the validation loss is no longer beat-
ing the baseline loss. At longer future predictions, it
seems that the LSTMs are unable to consistently pro-
duce reasonable predictions, which can be attributed
to the highly random and volatile nature of stock data
(Figure 3).

3.2 Many-To-Many

In addition to considering single price predictions at
various future timesteps, we consider the sequence to
sequence generation problem of predicting prices in
the time range [1, T ] from prices in the time range
[0, T − 1], where T is the length of the window. In
this way, we are constantly predicting the next price
throughout the entirety of the sequence instead of
just a the very end, ensuring that hidden states are
robust enough to model intermediate prices to not
simply memorize a final output. Additionally, we
reasoned that these intermediate predictions allow for
more informative and stronger gradients for improved
learning.

We began by training our baseline LSTM, and ad-

4



justed our target the sequence of prices offset by one
timestep, instead of just the final price. This model
had smooth losses, showing convergence relatively
early within about 10 epochs, and we found that val-
idation loss tracked the training exactly. These both
suggest that the model was underfitting, so we de-
cided to increase parameters by adding a 3rd layer
to the LSTM and increasing the hidden units to 400.
This deeper model had more noisy training and val-
idation loss, with steep spikes characteristic of the
Adam optimizer, and took about 300 epochs to con-
verge. We found that validation loss tracked train
almost exactly, with the lower bound on the loss es-
sentially the same as the baseline LSTM. Again, this
would suggest overfitting; however, we were unable to
experiment with deeper models due to GPU limits.

It is interesting to note that the larger model did
not reach as low a loss as the smaller model - more
training could have been done but it seems to reach
an asymptote. Additionally, the fact that train and
validation loss is almost identical is concerning (Fig-
ure 4). Perhaps the inherent randomness in these
stocks is too difficult to predict entire sequences reli-
ably.

3.2.1 Stock Generation

With few epochs of training, we found that generated
prices were completely sinusoidal and in phase with
one another. This was interesting as the neural net
was able to “derive” the properties of a Fourier trans-
form. As training increased, the generated prices
took on the form of more complicated compositions
of sinusoidal functions. This can be interpreted as
the hidden states learning a simple Fourier represen-
tation of the sequential data (Figure 5).

4 Conclusions

We were able to discover promising results that have
potential applications in high speed (minute scale)
trading. We found that in general, overlap augmen-
tation of time series data is beneficial for producing
smaller loss. 128 window size performed better than
64, but not significantly different from larger window
sizes. Cascading the neural network through trans-
ferring weights allowed rapid arrival at optimal losses
and resulted in slightly smaller absolute validation
loss. Finally, these LSTM networks were able to beat
our simple baseline of guessing the final input value.
With additional work, we think this simple model

0 100 200 300 400 500 600
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
M

SE

Sequence to Sequence Loss
2 Layers, 64 Hidden Units
2 Layers, 64 Hidden Units
3 Layers, 400 Hidden Units
3 Layers, 400 Hidden Units

Figure 4: Many-to-Many loss: 2 layer, 64 hidden vs
3 layer, 400 hidden. Solid lines are training loss and
dotted lines are validation loss

Figure 5: Generated sequence vs train time. solid
lines represent true data and dotted lines represent
generated data. Note the progression from damp-
ened, to single sinusoid, to sum of sinusoids.

5



could lead to viable trading systems.

Future Work

Some future directions we can explore in include eval-
uating models using methods and metrics like profit,
directional accuracy, and bull ratio [1].

Currently, we are considering stocks as indepen-
dent from one another when in reality, market trends
influence prices globally, or competition between
companies could produce negative correlation in their
price. Instead of using data where each time step as a
single price for once stock, we could increase dimen-
sionality to account for multiple prices from various
stocks. Another approach to consider would be in-
corporating properties other than price into our data,
including volume, open and close, various ratios, day
of the week, and other financial metrics that are in-
fluential. We believe with these additional features,
we will be able to capture much more nuanced infor-
mation not evident in stock prices alone.

Another natural approach to time data is via con-
volutional neural networks. Wavenet [10], a recent ar-
chitecture developed by Google Brain, is a generative
model that uses dialated 1D convolutions to generate
human speech audio sample by sample. Of course
the range of human speech is more restricted than
potential stock data, but it would be interesting to
compare this convolutional model to more traditional
recurrent models.

References
[1] Aamodt, Torkil. Predicting Stock Markets with Neural

Networks. MS thesis. 2015.

[2] A Dual-Stage Attention-Based Recurrent Neural Network
for Time Series Prediction. Qin, Y., Song, D., Cheng, H.,
Cheng, W., Jiang, G., Cottrell, G. International Joint
Conference on Artificial Intelligence (IJCAI), 2017

[3] Waibel, Alexander, et al. “Phoneme recognition using
time-delay neural networks.” Readings in speech recog-
nition. 1990. 393-404.

[4] Jaeger, Herbert. “The “echo state” approach to analysing
and training recurrent neural networks-with an erratum
note.” Bonn, Germany: German National Research Cen-
ter for Information Technology GMD Technical Report
148.34 (2001): 13.

[5] Saad, Emad W., Danil V. Prokhorov, and Donald C.
Wunsch. “Comparative study of stock trend prediction
using time delay, recurrent and probabilistic neural net-
works.” IEEE Transactions on neural networks 9.6 (1998):
1456-1470.

[6] B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Kor-
shunova, “Music transcription modeling and composition
using deep learning,” CoRR, vol. abs/1604.08723, 2016.

[7] https://lilianweng.github.io/lil-log/2017/07/08/predict-
stock-prices-using-RNN-part-1.html

[8] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K.
Menon and K. P. Soman, “Stock price prediction using
LSTM, RNN and CNN-sliding window model,” 2017 In-
ternational Conference on Advances in Computing, Com-
munications and Informatics (ICACCI), Udupi, 2017, pp.
1643-1647.

[9] D.G. Torres, H. Qiu, Applying Recurrent
Neural Networks for Multivariate Time Se-
ries Forecasting of Volatile Financial Data.
https://www.researchgate.net/project/Applying-
Recurrent-Neural-Networks-for-Multivariate-Time-
Series-Forecasting-of-Volatile-Financial-Data

[10] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, Koray Kavukcuoglu. WaveNet: A Gener-
ative Model for Raw Audio. arXiv:1609.03499.

6


	Introduction
	Data Collection
	Dataset Creation
	Preprocessing
	Windowing Techniques

	Approach and Results
	Many-To-One
	Many-To-One Cascade (Transfer)
	Overlap Effects
	Window Size
	Performance vs Baseline

	Many-To-Many
	Stock Generation


	Conclusions

