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Abstract

In this final project, we will provide a brief introduction into linear programming
(LP) and semi-definite programming (SDP) relaxations. While LP and SDP relax-
ations are powerful tools in approximation algorithms, the integrality gap inherent
in the methods mostly dictate the approximation ratio. By using LP/SDP hier-
archies, we can start with any relaxation of our choice and “lift” the relaxation
such that the final relaxation gives exactly the integer polytope. Clearly this final
relaxation takes exponential time, but the in-between relaxations are not well-
constrained in running time and integrality gap. In many cases, these are actually
open questions.

1 Introduction to LP/SDP relaxations

In class, we’ve seen LP relaxations in quite detail, since it transforms NP-complete problems (integer
programming) into polynomial-time solvable problems (linear programming). However, when we
do this relaxation, the optimal solution for the LP is at most the optimal solution to the integer
program. This results in an integrality gap, which is the maximum ratio between the solution quality
of the integer program and of the linear program relaxation.

Geometrically, the feasible region for the ILP problem is a polytope —it’s a convex hull of all integer
solutions to the integer program. The feasible region of the LP is also a polytope, but it’s not
constrained to integer solutions, and includes the entire integer polytope as a subset. As mentioned
in the abstract, we can use the LP/SDP hierarchies along with a starting relaxation to generate a
sequence of relaxations such that the final relaxation gives the integer polytope we were looking for.
For linear objective functions, solving this program will give us the true integer optimal solution as
all vertices of the integer hull are integral. Intuitively, such methods (sometimes called “lift-and-
project” methods) attempt to simulate degree k£ programming with an LP or SDP.

However, nonlinear constraints are more powerful than linear constraints. For instance, if we require
x € {0,1}, then in a quadratic program we can use the constraint 2(1 — z) = 0 to enforce the
integrality constraint.

We'll see specifically how the three major LP/SDP relaxations work in the following section. How-
ever, before we do that, we’ll have to set up some notation first.

2 LP Hierarchies

2.1 Notation

For any given 0-1 programming problem, P, let K C [0,1]™ be a convex space containing all
feasible solutions for the given problem, where

P=Kn{0,1}"



For Lovdsz-Schrijver, we will denote N*(K) as the polytope described by the ¢-th level of the
Lovész-Schrijver hierarchy, S*(K) as the polytope described by the ¢-th level of Sherali-Adams,
and Q*(K) as the polytope described by the ¢-th level of the Lasserre hierarchy:

P=N"(K)C NYK)=K

P=S"K)CS'K)=K

P=Q"(K)CQ"(K)=
2.2 Lovasz-Schrijver Hierarchy
Generally, the Lovasz-Schrijver Hierarchy isn’t used because it is weaker than either the Sherali-
Adams or Lasserre Hierarchies.

As with the other methods we will discuss, we define the levels of the hierarchy recursively:
N'(K) = N(N'"}(K))

where we will define N (V) as follows for any convex hull, V'

First, define

_{/\( )xEV/\>O}

(the cone extending from the origin in R®*! space through the embedding of V into R™*! where the
first coordinate is one. Note that the added dimension is indexed by 0, and so eg is the elementary
unit vector in the added dimension.

We define a matrix Y to be a generator for V' iff

Yij=Yo, Vj € [n]
Yej S C V] S [TL]
Y(eg —e;) € C Vi € [n]

Note that Vo € V' N {0,1}™, we have Y = ( ) (1)T is a generator for V' since

T

YJJ*IJ*“TJ*IJ*YOJ

1\ (1\"
Yej—( )() e; z; € {0,1} valid A

— ;) 1—x; € {0,1} valid A

And define
G(V) :={Y :Y is a generator for V}

NWV):={zeR":3Y € G(V)s.1. <91;> =Yeo}

-0
()

= Yeo
and by previous mention, Y € G(V) = V N {0,1}" € N(V) (no integer solutions are removed

from V when generating N (V)):
= PCN{(K)Vt>0

vz e Vn{o,1}m



2.3 Sherali-Adams Hierarchy

The formulation for Sherali-Adams we will give here is in terms of moment matrices — consult
section [4] for a primer on the moment problem and the representation of positive polynomials as a
sum of squares. This is the way that Lasserre’s hierarchy is defined, but it turns out to be helpful to
write Sherali-Adams in terms of this in order to compare Lasserre hierarchies directly. The original
formulation of Sherali-Adams in 1990 [6] is in terms of the “reformulation-linearization technique”
or RLT.

The construction of Sherali-Adams applies to semi-algebraic sets in the [0, 1]™ cube — that is sets
K={zel0,1]" : ge(x) >0,£ € [m]}

where g1, ..., g, are polynomials in zy,...,x, where the degree of each variable is at most 1.
Define P = conv{K N{0, 1}"} be the convex hull that we want to describe. In terms of what we’ve
seen in class, this is the same as the optimal solution to the 0/1 integer linear program. Because in
an integer program, z € {0,1}", 22 = z; for i € [n], so we can assume each variable x; appears
in a polynomial g, with at most degree 1, and so we can rewrite g¢(x) = >,y ge(I) [[;c; %- The

repetition of g, for this and the vector in R”(Y) with components g, (I) is intentional.

Now, we’ll discuss the constructions of Sherali-Adams in terms of moment matrices (again, see
section. For two z,y € RP(Y) define z x y € RP(V) by

xxy:= My(y)x; sothat (x*y)(I) = Z rryrukforalll C V.
KCV
Furthermore, this operation * obeys the following modified “commutativity” law
xx(y*xz)=y=*(x*z2)Ve,y,z € RPMY),
The next lemma provides the foundation for both the Sherali-Adams and Lasserre constructions:
Lemma 1. Fixz € K N{0,1}". Then the vector y € RFY) with entries y(I) := ||
My (y) = 0, My (g¢ *y) = 0 for £ € [m].

ic1 Ti satisfies

Proof. As constructed, My (y) = yy " and My (g¢ * y) = ge(x)yy " because y(I1 U J) = y(I)y(J)
forall I, J C V by definition. O

If we relax the condition in Lemma|[I] and require positive semidefiniteness of specific submatrices,
then we arrive at the Lasserre and Sherali conditions. Particularly, the Lasserre hierarchy requires

Miy1(y) = 0, My —y,q1(ge ¥ y) =, £ € [m],

for an integer t > v, — 1 and vy = (@] and the Sherali-Adams hierarchy requires
Myw (y) »= 0forw C V and |W| = min(t + w, n) (1)
My(gexy) = 0forU CVand |U| =t,£ € [m] 2

In both the Sherali-Adams construction and Lasserre construction, the polytope P is found after n
iterations. As it turns out, the Sherali-Adams relaxations turn out to be linear relaxations since the
condition in|1}2{ can be reformulated as a linear system in y.

The original formulation of Sherali-Adams is in terms of what’s called a “lift-and-project” system
[4]. Given a polytope P, defined by o) = —b < 0, £ € [m], x € [0, 1], we define S% (P) C R !
to be the set of z € RP# ~1 that satisfy the following lifted linear system (P} are all subsets of [n]
of size at most ¢):

For each constraint ¢(z) < 0 of P, for each U € P/*, and for each W C U, we have a valid

constraint
c(x) H Ts H (I—x5) <0,

seW seU-W



and for each I € P\Tllfl 1 replace Hse ; Ts by z7. Then, we add this linear inequality to the set of
constraints determining S (K).

Then, the ¢-th Sherali-Adams tightening of P is S*(K) is the projection of z onto singleton indices.
The Sherali-Adams rank of a polytope P is the smallest integer ¢ for which S*(K) is the integral
hull of K.

2.4 Lasserre Hierarchy

The Lasserre system extends the Sherali-Adams system. In order to define the Lasserre system, we
use the terminology from the lift-and-project definition of Sherali-Adam:s.

Consider a vector z € S% (P). We say z is of PSD form if we can write a correspondence between
every set I and vectors v € RF*+1 such that each pair of sets I, .J that satisfy |[I U J| < t + 1 also
satisfies vy - vy = z7uy.

Then, if z satisfies the conditions for Sherali-Adams, and is also of PSD form, then z € LtA(P).
Intuitively, this means z is a lifted solution for ¢ Lasserre tightenings of P. Then, the ¢-th Lasserre
tightening of P is L*(K), and is the projection of z onto singleton indices.

3 Applications of Hierarchies

3.1 Stable-Set Polytope Problem

The Stable-Set problem (also known as Maximum Independent Set) is, given a graph G, to pick the
set of nodes with highest total weight such that no two selected nodes are adjacent.

Linear Relaxation:

max Z x;w(v;)

N i€[n]
st wi+x; <1 V(i,5) € E(G)

Quadratic Relaxation:

x

max 3 [l )
i€[n]
s.1. M <0 V(Zm]) € E(G)

n—1
Stephen and Tuncel (1999) showed that N * (K), the "T_l level of the Lovasz-Schrijver Hierarchy
on the Quadratic Relaxation, is the optimal polytope.

This is insufficient to derive a poly-time algorithm, but it reduces the exponent of the runtime.

3.2 Max-Cut Problem

Recall that max-cut can be formulated as an unconstrained quadratic £1-problem by
maxz ' Az|z € {+1}"

and A is the adjacency matrix, where A4; ; = c(i, j), the cost of the edge from vertex 4 to vertex j

The most straightforward way is to formulate the problem as a linear problem

max({A, X)|X € CUT,)



where CUT,, is the cut polytope
CUT, := conv(zz ' |z € {+1}").

We’ll also define M E'T;, as the metric polytope containing symmetric matrices X with ones on the
diagonal and satistying X;j + X;k + X;k > -1, X;5 — X3k — X;k > —1.

Here, we would try to apply the constructions to CUT, represented as an LP. The most practical LP
formulation of the cut polytope of a graph G = (V, E). Define CUT(G), M ET(G) by the projec-
tions of CUT, M ET onto the subspace R” indexed by the edges of G. Barahona and Mahjoub in
1986 showed that CUT(G) C M ET(QG) and equality holds iff G does not have K as a subgraph
(that is, the connected graph on five vertices).

If we apply the Lovdsz-Schrijver construction on K = MET(G), then we find that
N(MET(G)) = CUT(G). we can also apply Lovész-Schrijver on K = M ET(K,,) and project
back into R” — this instead will give us N(G) = projg(N(MET(K,))), a relaxation of CUT(G).
As of the publication of [3], it is known that N(G) C N(M ET(G)), but general equality is an open
question.

Laurent (2001) showed that N*(M ET(G)) = CUT(G) if G has t edges whose contraction pro-
duces a graph with no K5 minor. Additionally, N"~4(K,,) = CUT(K,) for n > 4. Finally, the
inclusion Ny (MET(G)) C N(MET(G)) is generally strict, there has not been an instance of a
graph for which the iterations needed to find CUT'(G) is smaller for N than for N.

If we instead apply the Sherali-Adams or Lasserre constructions to K = M ET(G), the resulting
relaxations Q' (M ET(G)) C S*(MET(G)) N NL.(MET(G)). However, the definition of Q" has
a SDP with (worst-case) exponentially many constraints — this can be fixed by projecting onto R” —
this gives O(n?) semidefinite constraints.

According to Lasserre’s paper [8]] specifically pertaining to max-cut, the Lasserre hierarchy has very
good results (ALG > 0.870PT for () with nonzeroes entries, where () is the matrix associated
with the quadratic formulation, where the algorithm is only to use the first iteration of the Lasserre
hierarchy. Of course, deeper levels of the hierarchy will yield better results, but as yet no layer
reachable in polynomial time has been proven to provide asymptotically stronger results.

4 Moment Theory

As mentioned earlier, we can formulate both the constructions of Lasserre and Sherali-Adams in
terms of moment matrices — matrices indexed by subsets of the set V' = {1,...,n} such that their
(I, J)-entry depends only on the union I U J. The following survey of the moment problem and
moment matrices is due to [3]], but some additional clarifying details are provided.

In order to introduce the moment problem, we need a little bit of machinery. First, a semigroup is
a mathematical structure composed of a set S and an operation - on the set. The set must be closed
under -, and for any 3 elements a,b,c € S,a-(b-¢c) = (a-b) - c. Note that a - b # b - a in general.
However, if such an identity holds for all pairs a,b € S, we call S abelian.

So, let (S, +) be a an abelian semi-group, and let S* be the set of multiplicative nonzero mappings
f S — Ri.e. nonzero functions that satisfy f(a + b) = f(a)f(b) for all a,b € S. For a sequence
Yy = {Ya}aes indexed by S, its moment matrix M (y) is defined as the S x .S matrix such that
M(y)as = Ya+p forany two o, 5 € S.

If S is the semigroup P(V') (the power set of V'), with union operation, the moment matrix My (y)
is exactly the one we saw in section[2.3] Specifically, we index by subsets of V, and generate new
subsets by unions. If, instead, S is the semigroup Z with the addition operation, then we denote
the moment matrix as M? for the moment matrix of y € R%*, and M7 (y) is the principal submatrix
indexed by all sequences o € Z"} with |o| < 2.



Then, we can also characterize these sequences like we characterize matrices — specifically there is
the notion of a positive semi-definite sequence y € R®. Following Berg’s notation in 1979[2]] and
198431, such a sequence is positive semi-definite if every finite principal submatrix of its moment
matrix M (y) is positive semi-definite. Recall from lecture that a symmetric matrix M is positive
semi-definite if 2 " Mz is nonnegative for every nonzero column vector z in R"™.

For a subset F' C S*, a sequence y € R¥ is called an F-moment sequence if there exists a positive
Radon measure 1 on S* supported by F' such that

Ya = o fadﬂ(f> Ya € S.

In particular, in measure theory, a measure m is called inner regular or tight if, for any Borel set B,
m(DB) is the supremum of m(K') over all compact subsets K of B. A measure m is called locally
finite if every point of X has a neighborhood U for which m(U) is finite. Finally, a measure m is
called a Radon measure if it is both inner regular and locally finite.

Finally, since we now know what moment matrices and moment sequences are, the moment problem
is just the problem of characterizing moment sequences. It’s been studied extensively, especially
with the semigroup Z} since that results in S* = R" and the moment sequence condition is simply

o = [ aduo)
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