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Introduction

600.271, or Automata & Computation Theory, is one of the required courses for a Computer Science
major or minor at Johns Hopkins University. These notes are live-TEX’d, and these are my first
attempt at live-TEXing notes. I used the TikZ package to draw the automata in this document.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the
material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to dli44@jhu.edu.
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Lecture 1 (01/27/2015)

What is Automata & Computation Theory?
It’s all about computation and its limits. There are three parts to this class:

1. Simple models of computation

2. What things can we compute?

3. What things can we compute efficiently?

For the most part, we will be covering decision problems, that is, problems whose solution is either
yes or no.
The first model of computation we will be dealing with is one with a finite and fixed amount of
memory. We represent the memory in a finite number of states.

Example. Does an input string have 3 ‘a’s?

In this first model, we read input one character at a time.

0start 1 2 3
a

b

a

b

a

b a/b

These are called Deterministic Finite Automaton or DFA for short. These have the following
three properties:

• There is one start state.

• There is a set of accept states.

• For each state q and input character σ, the DFA has a unique transition from q to some state
on input σ.

Example. Does the input string contain exactly two ‘b’s?
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0start 1 2 3+
b

a

b

a

b

a a/b

Example. Every time an ‘a’ appears in the input, is it immediately followed by a ‘b’?

q0start q1 q2

a

b

b

a

a/b

Example. A DFA that accepts every string.

q0start

a/b

Example. A DFA that rejects every string.

q0start

a/b

We will now define terms that will be important for the rest of the class.

Definition. An alphabet is a finite, nonempty set. We usually denote an alphabet with Σ. Some
examples of alphaets are Σ1 = {a, b, c} or Σ2 = {0, 1, 2, 3}.

Definition. Elements of an alphabet are called letters or symbols. a is a letter of Σ1.

Definition. A string or word over an alphabet is a finite sequence of letters or symbols. We
denote the empty string by ε.

Definition. A concatenation of two strings x, y is xy, the string consisting of the letters of x
followed by the letters of y. We also have xε = εx = x.

Definition. Given a string x, xk = xx · · ·x︸ ︷︷ ︸
k times

or x concatenated with itself k times. We also define

x0 = ε

Definition. A language over an alphabet Σ is a set of strings over Σ. Note that a language can be
infinite.
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Example. Let Σ = {0, 1}. Suppose L1 is the language of all strings with length less than or equal
to 2. Then,

L1 = {ε, 0, 1, 00, 01, 10, 11}.

Definition. Σ∗ is the language of all strings over Σ.

Example. Suppose L2 is the language of all strings ending in a 0. Then,

L2 = {w0 | w is a word in Σ} = {w0 | w ∈ Σ∗}.

We can also create new languages from existing ones using the operations on sets.

L3 = L1 ∪ L2

L4 = L2 − L2

L5 = anbn for a, b ∈ Σ, n ≥ 0 = {ε, ab, aabb, . . .}

Notice that L1 is a finite language. L2,Σ
∗, L3, L4, and L5 are infinite languages. So, remember that

languages can be infinite but elements of languages are always finite.

Definition. Given a string x, we define the length of a string, |x| to be the number of characters
in the string. For instance, |ε| = 0 and |aabb| = 4.

There is a connection between the DFAs and the theory of computation. Essentially, we can use
DFAs to decide if a string is in a language? Can we check if a string is in L5?
Mixed response from the students.
In fact, we cannot check if a string is in L5. In order to do so, we would have to count the number
of as in the string, but since we have a fixed and finite number of states, we cannot verify strings
of arbitrarily large lengths.
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Lecture 2 (01/29/2015)

Today, we want to move onto a more mathematical description of DFAs rather than the informal
description. Using a more mathematical model, we can describe the idea more concisely. Let’s start
with the following DFA:

q0start

q1

q2

q3

0

1

0

1

0

1

0

1

Let’s think about the strings that are accepted by this DFA. If we start at the start state, how
can we get to the accept state? For instance, this machine accepts the string 000. In general,
this machine accepts strings that end in three zeroes. Keep in mind that this also includes those
strings that end in three or more zeroes. We say that the machine accepts any string in the set
{w000 | w ∈ Σ∗}, where in this case, Σ∗ is the binary alphabet of 0 and 1.
Earlier we talked about how we were interested in decision problems, which turns out to be equiv-
alent to ask if a string is in a language. Recall that a language is a possibly infinite set of strings
and that the strings are always finite. Note that there are several key features to every DFA:

• There is a finite set of states, which we call Q.

• There is an input alphabet associated with it, which we denote by Σ. Recall that this alphabet
must be finite.

• There is a transition function that takes a state and an input and gives a state. We write this
as δ : Q× Σ 7→ Q.

• There are accept states or final states, which we denote by F . Note that F ∈ Q.
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• There is a start state q0 ∈ Q.

We say that a DFA M is a 5-tuple, where M = (Q,Σ, δ, q0, F ). If we have specified these five, then
we have completely described the DFA. Let’s write down the DFA from the first example.
We have

• Q = {A,B,C,D}

• Σ = {0, 1}.

• δ =
A B C D

0 B C D A
1 A A A A

We can also specify it as follows: δ(A, 0) = B, δ(B, 0) = C, δ(C, 0) = D, δ(D, 0) = D, δ(q, 1) =
A∀q ∈ Q.

• q0 = A

• F = {D}.

We can also formalize the notion of a DFA accepting a string. We say that a DFAM = (Q,Σ, δ, q0, F )
accepts a string w ∈ Σ∗ if starting from the start state q0 and moving between states according to
the transition function δ, the machine ends in an accept state.
So, now we have the notion of a language of a machine. We call the set A of strings that a DFA
accepts the language of M . It is written as L(M) = A.
We say that a machine M recognizes a set B if the language of M is equal to B.
If we consider our input over {0, 1} as binary numbers, then the language of odd numbers is
{w1 | w ∈ Σ1} where Σ1 = {0, 1}∗. Say we want to build a DFA that recognizes this language.
We would have two states. We start in one state and the other state is the final state. If we meet
a 1, we would go to our final state and otherwise, we go back to the start state.

q0start q1

0

1

1

0

Let’s consider the language Σ = {0, 1} and build a DFA that recognizes the set of strings {w |
treating w as a binary number, w is a multiple of 5}.
We would have five states labeled from 0 to 4(considering everything modulo 5). 0 is our start state
and our accept state. When we encounter a 0, we double the number of the state and go to that
state. When we encounter a 1, we double the number of the state and add 1 and go to that state.
See the following diagram:
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q0start

q1

q2

q3q4

0

1 0

1

0

1

0

1

0

1

Well, why does this work? We have exploited the fact that we can write a binary number a
bn2n + bn−12n−1 + · · · + b12 + b0. When we get a new digit, we move everything over one place
and input our new digit. And since we’re working in modulo 5, we only need to keep track of the
number modulo 5. This is kind of messy but if we write it down in a more mathematical notation,
it might not be quite so bad. We have Q = {0, 1, 2, 3, 4}, F = {0}, q0 = 0. We now need to specify
δ. δ : Q× Σ 7→ Q is defined as δ(Q, b) = 2Q+ b mod 5.
Now let’s say we want to generalize this to any fixed value of n. Let Ln be a language where we have
{w | w a binary number divisible by n}. Here, we can’t just write down a diagram because we don’t
have an explicit value for n. Maybe if n = 100 or n = 1000000 we can draw the DFA, but we want
to solve this for the family of languages L1, L2, · · · . We can build a DFA Mn = (Qn,Σn, δn, q0n , Fn).
We can specify these as follows:

• Qn = {0, 1, 2, · · · , n}

• Σn = {0, 1}

• δ(Q, b) = 2Q+ b mod n

• q0n = 0

• Fn = {0}

This is neat, since we have found the solution for this whole family. In the case L5, note that this
accepts the empty string ε. Suppose we wanted to exclude ε. What would we do to change the
DFA? We would create a new start state that would have the same transitions as the start state of
the old machine.
Now, we want to formalize the notion of computation. Let M = (Q,Σ, δ, q0, F ) be a DFA and
let x = x1x2 · · ·xn be a string with each xi ∈ Σ. We say that M accepts x if there exist states
r0, r1, · · · rn ∈ Q such that three conditions hold:

• r0 = q0
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• ri = δ(ri − 1, xi)∀1 ≤ i ≤ n,

• rn ∈ F .

So, if we were to take a look at the DFA for L5 again, and consider the string 1010, then it is pretty
easy to see r0 = 0, r1 = 1, r2 = 2, r3 = 0, r4 = 0 and we have ended up in an accept state. We call
this sequence of states that a machine M goes through on an input x the computation of M on
x. We call an accepting computation one that ends in an accept state.
One final definition, then more examples.
We call a language regular if it is recognized by some DFA.
We want to see what type of languages we can make from DFAs. Let’s consider the alphabet {a, b}
and the language L1 = {w | w has an odd number of bs}.

q0start q1

a

b

b
a

We want to restrict this language a little bit, so we come up with a new language L2 = {w |
w has an odd number of bs and w has exactly two as}.
This is a little more complex.

q0start q1

q2 q3

q4 q5

q6

a

b

a

b

a

b

a

b

a

b

a

b

a/b
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We’ve actually decomposed L2 into two parts; the L1 part and an L3 part that verifies that there
are two as. Note that L2 = L1 ∩ L3. If we draw the DFA for L3, we find

q0start q1 q2 q2
a

b

a

b

a

b a/b

that we’ve taken L1 and “multiplied” it (in some sense) by L3 and we have a new “Franken”-machine
L2. It turns out that we can do this in general. We have now come to the first theorem of the
course!

Theorem 1. If L1 and L2 are regular languages, then L1 ∩ L2 is a regular language.

Proof. We do a proof by construction. Since L1 and L2 are regular, there exist DFAs M1 =
(Q1,Σ, δ1, q1, F1),M2 = (Q2,Σ, δ2, q2, F2) such that L(M1) = L1 and L(M2) = L2. Now, we want to
build a new machine M = (Q,Σ, δ, q0, F ) that recognizes the intersection of the languages. How do
we keep track of this? We use pairs of states as our language Q = Q1×Q2. We want them to start
in the respective start state of each machine, so this tells us q0 = (q1, q2). Also, we want to move
each machine according to its own transition function, so we have δ((Q,R), x) = (δ1(Q, x), δ2(R, x)).
Finally, we determine F . We want the set of pairs (Q,R) such that Q ∈ F1, R ∈ F2, but this is the
exact same as F1×F2. We claim that L(M) = L1∩L2. If we wanted to be extremely rigorous then
we would need to use the accepting computations to show set equality.
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Lecture 3 (02/02/2015)

Recall the definition of a DFA – M = (Q,Σ, δ, q0, F ) and the definition of a regular language - a
language that is recognized by some DFA.
Today, we’re going to take a look at another operation. Recall that last time we showed that if
languages A and B are regular, then their intersection A ∩ B is also regular. We’ll start by taking
a look at another statement of this form:

Theorem 2. If a language A is regular, then the complement of the language, Ac is also regular.

Proof. First we must understand what Ac means – because there must be a universe to take the
complement. Then, Ac = {w ∈ Σ∗ | w 6∈ A}. Then, if A is regular, then there is some DFA M such
that L(M) = A. Our goal is to construct a new DFA, M ′ such that L(M ′) = Ac. Note the similarity
to our proof that the intersection of two regular languages is regular. Consider M = (Q,Σ, δ, q0, F )
and M ′ = (Q,Σ, δ, q0, F

′) where F ′ = Q − F . Now, we want to show two things: if some string
w ∈ L(M) then w 6∈ L(M ′) and if some string w 6∈ L(M) then w ∈ L(M).
If w ∈ L(M) then M ends in an accept state on input w, but by definition, w does not end in an
accept state in M ′. Conversely, if M does not end in an accept state on input w then M ′ will end
in an accept state on input w.

What about this?

Theorem 3. If A and B are regular languages, then A ∪B is also regular.

Proof. Although this could be done with a proof by construction, it is far easier to use the previous
two theorems. We can use DeMorgan’s Law to show that A∪B = (Ac∩Bc)c. Here, we’re basically
done, since because A and B are regular, then Ac and Bc are regular so Ac ∩ Bc is regular and
finally, (Ac ∩Bc)c must also be regular.

The book gives another one, which happens to be difficult to do with DFAs. We want to consider
another operator (endswidth)
If we have a regular language L, then (endswith)(L) is some other language {xw | x ∈ Σ∗, w ∈ L.
We want to show that (endswith)(L) is also regular. How do we go about proving this?
We want two types of boxes, one for L and one for Σ∗. The box for L is basically the DFA for L.
We want to start going through Σ∗ but at some point, we want to move over to the box for L. But
when do we move over?
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To answer this question, we will define a new type of machine.
A nondeterministic finite automata (NFA) is unlike a DFA in that it “gives us choices”. There
are multiple transitions on the same input so we can have something that looks like this:
We can have transitions on no input, with the transition usually denoted by ε. This means we
haven’t read any input but we still move from one state to another on the epsilon transition.
Finally, we can have states without transitions for some or all input symbols.
Let’s do some examples before going into the formal definition. We will fix our input alphabet to
be {a, b}.
The way this works is that if you go into a state with no transitions, then that string is rejected.
We say that L(N1) = ∅. This is kinda boring, so let’s try another one.
Let’s try to figure out L(N2). We could go aba, or bba, aa. Let’s call this language L2. Now, we’ll
return to our (endswith) function. We didn’t know when to transition from one “box” to another.
With NFAs, we have an answer to this. The (endswith)(L2) is those strings that end in aba, or
bba, aa.
We can do this because we have the epsilon transition. Now that we have NFAs, it appears
that we have more computation power. Let’s try go about making this formal now. An NFA
N = (Q,Σ, δ, q0, F ) with

• Q a finite set of states

• An alphabet Σ

• q0 is still our start state

• F ⊆ Q are our accept states

• δ(Q,Σε) gives a set of states, so the image of δ is a subset of the power set of Q. Σε = Σ ∪ ε.

Let’s try some examples. Consider the NFA N3:
Here we have a somewhat complicated machine - N3 = (Q,Σ, δ, q0, F ) with Q = {1, 2, 3},Σ =
{a, b}, q0 = 1, F = {1}. Now what about δ? For δ, we have to build a table:

a b ε
1 ∅ {2} {3}
2 {2, 3} {3} ∅
3 {1} ∅ ∅

Now, what does it mean for a NFA to accept a string? We say that a NFA N = (Q,Σ, δ, q0, F )
accepts a string w if we can write w = x1x2 · · ·xm for xi ∈ Σε (note that |w| ≤ m because some xi
could be ε) and there exist states r0, · · · , rm such that

1. r0 = q0

2. ri ∈ δ(ri−1, xi)

3. rm ∈ F

If we were to follow this procedure for N3 for input baabaa, we can follow w =baabaεa in the
machine
The last thing we’ll want to do today is to show you that NFAs and DFAs are equivalent. There
are some cases where a DFA is much harder to construct than an NFA.
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Theorem 4. For every NFA N there exists a DFA M such that L(M) = L(N).

Proof. We have our N = (Q,Σ, δ, q0, F ) and we are going to build a DFA M = (Q′,Σ, δ′, q′0, F
′). If

we want to keep track of all of the possible places we could be in N , then what should our states
look like in M? We should have Q′ = 2Q. Then where do we start? We should have q′0 = E({q0}).
Then what should our F ′ be? It should be the set of subsets S of Q such that S ∩ F is not empty.
We now need to handle δ. We need δ′ So, δ′(S, a) =

⋃
q∈S δ(q, a). The last thing we need is to

handle epsilon transitions.
For any state S ∈ M (or S ⊆ Q), E(S) = {q} such that q is reachable in S by following zero or
more epsilon transitions. Then to handle epsilon transitions, we also need to alter our δ′ so we
define δ′(S, a) = E(δ(S, a)).
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Lecture 4 (02/05/2015)
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Lecture 5 (02/10/2015)

So far we’ve only dealt with the class of languages called regular languages, that is, those that
can be recognized by a DFA or NFA. As it turns out we can build regular languages using smaller
languages and operations on languages. But it’s a little clumsy to define languages in terms of these
operators.
Here, we have the language consisting of a single string, {a}. We can apply the Kleene star operator
on this to get the set of all languages with zero or more as. We can concatenate this with other
singletons and use the union operators. Since regular languages are closed under the Kleene star
and under concatenation and under unions, any combination of these describes a regular language.
Since this is a little cumbersome, we’re going to use a notation called regular expressions. This
is nothing more than a shorthand for writing down a regular language. In some cases, it’s very hard
to write down a language using a regular expression but usually, it’s pretty straightforward.
Let’s try this on our language. Using this, in principle, we can construct any regular language.
There are essentially six types of regular languages:

• ∅ - represents the empty language

• ε - represents the language consisting of the empty string

• a - represents the language consisting of the single string a

• If R1, R2 are regular expressions, R1 ∪R2 is a regular expression.

• If R1, R2 are regular expressions, R1R2 is a regular expression.

• If R1 is a regular expression, then (R1)
∗ is also a regular expression.

Then, what is the standard order of operations? The order is star, then concatenation, and finally
union. As one final shorthand, we can write Σ to mean the union of all the elements in Σ.
Imagine we have the language L1 = {wba | w ∈ Σ∗}, with Σ = {a, b}. If we were to write this
as an equivalent regular expression, we could write this as Σ∗ba. What if we have L2 = {w |
w starts and ends with the same symbol.}? We get aΣ∗a ∪ bΣ∗b ∪ a ∪ b ∪ ε.
I claimed earlier that regular expressions are equivalent to regular languages. We need to show
that a language generated by regular expressions can be recognized by a DFA or NFA and that if
a language is recognized by a DFA or NFA, then it can be generated by a regular expression.

Theorem 5. A regular expression R can be converted to an equivalent NFA N . This means the
language generated by R is equivalent to the language recognized by N .
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Proof. We’re going to perform a type of induction called structural induction.
Base cases:

• ∅. We can build an NFA

• ε. We can build an NFA

• a ∈ Σ. We can build a NFA

For these, we have clearly built NFAs that are equivalent.
Inductive step: Assume there exists NFAs N1, N2 such that L(N1) = L(R1) and L(N2) = L(R1).
Then, by definition, L(R1 ∪R2) = L(R1) ∪ L(R2). Similarly, L(R1R2) = L(R1)L(R2) and L(R∗1) =
L(R1)

∗. By these equivalences, the first one is L(N1) ∪ L(N2), the second is L(N1)L(N2) and the
third is L(N1)

∗

Since regular languages are closed under these operations, and these are regular languages because
N1 and N2 are NFAs. Therefore, we can build an NFA for any regular expression R.

We can use the ideas of this proof to actually construct the NFA. We can start with a regular
expression and build an NFA out of it. Let’s say our regular expression is a(ba)∗ ∪ b(ab)∗. This is
any alternating sequence of a and b with odd length. Let’s convert this to an NFA. To do this, we
need to do it a step at a time.
We can verify this using strings like babab. Note that this NFA isn’t the smallest one that can do
this, but it is one that works. We’ve only done one direction. The other direction has a pretty
simple idea, but doing it is a hassle.

Theorem 6. Every NFA has an equivalent regular expression.

First, we prove the following lemma.

Lemma. Every NFA can be converted to an NFA with one accept state and no transitions to the
start state and no transitions from the accept state

Proof. Add a new start state and a new accept state. Make all of the previous accept states
transition to the new one with epsilon transitions, and make the new start state transition to the
old start state by an epsilon transition. We could formalize this, but this is just the basic idea.

Now we can prove the theorem.

Proof. First, we convert our NFA with a single accept state to a new type of machine, called a
generalized NFA (GNFA) where the edges of the transitions are labeled with regular expressions.
Next, we remove states from the GNFA one at a time producing equivalent GNFAs until we have
a GNFA with one start state, one accept state, and one transition labeled by a regular expression.
This gives us our equivalent regular expression. Now, you might ask how we remove states, since
it’s the central operation we’re performing. First, just pick any state qr different from the start and
accept states. For any states qi, qj such that we have a transition r1 from q2
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Lecture 6 (02/12/2015)

We’re going to continue talking about regular languages today, and then we’ll go into nonregular
languages. To start, we’re going to take a look at a DFA.
We want to see which string (with length > 4) are accepted by this DFA.
w1 = aaaa, w2 = baab is in the language.
w3 = bbbb, w4 = bbab, w5 = abaabb is in the language.
All of these strings have this interesting property; they can be written as xyz, x, y, z ∈ Σ∗, where
y is nonempty, but they also xyiz is in the language for all values of i. It seems surprising at first
glance, but if we let x = ε, y = aa, z = aa and xy2z = aaaaaa is accepted by the DFA. Also,
xy0z = aa ∈ L. Now, what about w2? Let x = b, y = aa, z = b =⇒ xy3z = ba6b ∈ L. For w4, we
can let x = z = ε and y = bbbb, so that b4i ∈ L for all i ∈ N.
Note that not all partitions into x, y, z will work, but for these strings, at least one will work. We
might wonder if this is a property of the DFA itself or if this is just a property of the language. If
we try to come up with another DFA for this language, we can get:
These DFAs have the same language, and this property still holds, even though the states and
transitions have changed entirely.
We can take these special strings and partition them into three parts, and arbitrarily “blow-up”
the middle part of the string and the resulting string will be in the language. We can give this
property a name; a language L is pumpable if there exists an integer p such that for all strings
w ∈ L, |w| > p, there is a partition w = xyz such that

• xyiz ∈ L for all i ∈ N

• y is nonempty.

• We can constrain the length of xy ≤ p.

As it turns out this property is not exclusive to regular languages, but it turns out to be interesting
and important to our study of regular languages.
Let’s try another language L2 = {aibjck} with the property that i = 1 =⇒ j = k.
Claim: L is pumpable with p = 1.

Proof. This actually requires five cases to deal with, but we’ll just give the first part of the proof.
Case 1: w = abjck.
We want to be able to pump this: x = ε, y = a, z = bjck. This satisfies the last two conditions quite
easily. We check the first condition: xynz = anbjck. Because of the previously mentioned property
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of the set, j = k, so anbjcj ∈ L. If n = 1, we must have j = k, but this is already satisfied. If n 6= 1,
we can let j, k be anything, and in particular, we are allowed to have j = k.
Case 2: w = bjck.
x = ε, y = b, z = bj−1ck, assuming j > 0. If j = 0, set y = c, z = ck−1. There are more cases to deal
with, but these are increasingly less fun to deal with.

So why do we care about this property? There is an important theorem called the pumping lemma
that states regular languages are pumpable. However, this theorem doesn’t say if a language is
pumpable or not. The main use for this theorem is its contrapositive; if a language L is not
pumpable, then L is not regular.
This is a complicated proof to write down, but the idea is quite simple. Essentially, when we traverse
a DFA, we can traverse transitions until we get back to our original state; in our first drawing, we
could traverse aa from state 2 to state 3 and back to state 2 any number of times (including zero
times). The argument for the proof hinges on the pigeonhole principle; for our first drawing, p = 4.
This is because if we go through 4 transitions, we need to have passed through 5 states, and since
there are only four states, we must have visited at least one of the states more than once.
If a DFA Q has n states, then p = n+ 1 is a valid pumping length. Although there is the notion of
a minimal pumping length, I don’t find it extremely enlightening to discuss.
We’ll prove the pumping lemma now.

Theorem 7. Every regular language is pumpable.

Proof. Let M = {Q,Σ, δ, q0, F} be a DFA that recognizes a language L and let p equal to the
number of states in M . Let s = s1s2 · · · sn of length n where n ≥ p. Let r1, · · · , rn+1 be the states
that M enters while processing s, so that ri+1 = δ(ri, si). By the pigeonhole principle, there are
distinct i, j such that ri = rj. As M is computing on s, it is moving from state to state until it
reaches ri. Let input it takes to get to ri be our x. Therefore, we have x = s1 · · · si. Then, we keep
computing until we reach ri again; this next segment is our y = si+1 · · · sj and we let z = sj · · · sn
be the rest. Since y takes ri to rj, and any yi also takes ri to rj, and since rn+1 is an accept state,
M must accept xyiz. We know that i 6= j so |y| > 0 and finally, j ≤ p + 1, so |xy| ≤ p. Thus we
have satisfied all the properties of the pumping lemma.

Since we have some time left, let’s do an example to show that a language is not regular by showing
that it can’t be pumped. Next time, we’ll also discuss other ways for showing this.
We’ll start with a language we’ve talked about many times: L = {anbn | n ∈ Z}. To show L is not
regular, we need to show the following:
For all pumping lengths p there exists w ∈ L, |w| > p such that for all partitions of w = xyz, such
that |xy| ≤ p, |y| > 0 and there exists an i such that xyiz 6∈ L.

Proof. Assume L is regular with pumping length p. Now we’ll let w = apbp, which has length
2p > p. Let x, y, z be a partition of w such that y is nonempty and |xy| ≤ p. Let’s write down
what x, y, z have to look like. Since xy has length at most p, xy consists of 0 or more as, so
x = ai, y = aj, z = ap−i−jbp for j > 0.
Consider xy2z = aia2jap−i−jbp = ap+jbp. Since j > 0, p+j 6= p so xy2z 6∈ L and L is not regular.
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Lecture 7 (02/17/2015)

Today we’re going to go more into how we prove languages are not regular. If we want to show that
a language is not regular, we have two ways we can go about doing this, and they’re both proofs
by contradiction. One way is to show that L is not pumpable, and the second is to use closure
properties of regular languages. The second method requires some more insight, but the pumping
lemma involves a more “brute-force” method.

Last time, we proved that L = {anbn, n ≥ 0} is not a regular language. We said that if L is
regular and has pumping length p, we let w = apbp. Then by the pumping lemma, we know w
can be partitioned into xyz such that |xy| ≤ p and |y| > 0. We then picked a value for i (the
exponent of xyiz) greater than 1, and noticed that since |xy| ≤ p, they are composed only of as,
and x = ak, y = am,m > 0 so z = ap−k−mbp and then xyiz = ap+mbp 6∈ L.
Let’s consider the steps that we used to show a language is not regular using the pumping lemma.

1. We assume that our language L is regular with pumping length p.

2. Then choose some w ∈ L where |w| ≥ p. To do this, we choose some word in the language that
depends on p in some way and makes our choice of x and y easy to deal with. For instance,
we could have chosen ap/2bp/2, but this would have made x and y more difficult to deal with.

3. Then we have to consider all possible partitions xyz = w such that |xy| ≤ p and |y| > 0.

4. Finally, we choose i 6= 1 such that xyiz 6∈ L.

Notice that we must prove that every possible partition is not pumpable.

Let’s try an example. Let L1 = {ambn | m ≥ n}. First, we assume that L is regular with
pumping length p. What w should we choose? We can pick w = apbp. We can partition this
as x = ak, y = am, z = ap−k−mbp. Here, we consider xy0z, which is just xz. Then, we have
xy0z = ap−mbp. Since p > 0, we have xy0z 6∈ L. This is an example of “pumping down”, where
the example before is “pumping up”. In general, I find “pumping up” easier to do than “pumping
down” because if you “pump down”, you only left with xz instead of xyiz for some i ≥ 2.

Let’s consider L2 = {a2n | n ∈ N}. To show that this language is not regular, we can also apply the
pumping lemma. First we assume L2 is regular and has pumping length p. Now, what should we
pick for p? We can pick w = a2

p
, which has length 2p. We need to consider all possible partitions

w = xyz with |xy| ≤ p and |y| > 0. This gives us x = am, y = an, z = a2
p−m−n. Here, we want to
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pump up and show that what we end up with is not regular. We get xy2z = ama2na2
p−m−n = a2

p+n.
Since m + n ≤ p, so 2p + n ≤ 2p + p < 2p + 2p = 2p+1. Since 2p < 2p + n < 2p+1, 2p + n is not a
power of 2, and xy2z 6∈ L2

Consider L3 = {ss | s ∈ Σ∗}. If Σ = {a} for some symbol a, it’s regular; L3 = (aa)∗. We want
to show that if Σ contains more than 1 letter, then L3 is not regular. Let Σ = {a, b}, and let
w = apbpapbp. Let xyz = w with |xy| ≤ p, |y| > 0 and x = am, y = an, z = ap−m−nbpapbp. Then
consider xy2z = ama2nap−m−nbpapbp = ap+nbpapbp. Suppose xyz2 ∈ L3. Then, xy2z = ss for some
string s. Since |xy2z| = 4p + n, |s| = 2p + 1

2
n. Then, the first s starts at the beginning and ends

somewhere in the first set of bs. But this means the second s must start somewhere in the bs. But
the first s starts with a but the second s starts with a b. This is a contradiction and xy2z 6∈ L3.

As you can see, it’s tricky and somewhat of a hassle to prove languages are not regular using the
pumping lemma. Let’s consider the other method, which is to use closure properties of regular
languages. Let L4 = {x | x has the same number of as and bs, in any order}. We could do this
using the pumping lemma, not with great difficulty, as it turns out. To apply closure properties,
assume L4 is regular. Then, we apply the intersection properties; L4 ∩ a∗b∗ must be regular but
L4 ∩ a∗b∗ = L = anbn which is not regular. This is impossible, so our original assumption that L4

is regular must be incorrect.

We’ll try one that’s a little more complicated: L5 = {s | |s| = 2n, n ∈ N with the first half is
different from the second half}. Here, we can consider a sequence of steps. Suppose L5 is regular,
then LC

5 must be regular. This consists of all strings w such that |w| = 2n + 1, n ∈ N and w = ss
for some string s. Then, so is LC

5 ∩ (ΣΣ)∗. But this is L3, which we proved was not regular. Then,
L5 must not be regular.

Let L6 = {akbncm where if a = 1 then n = m}. We showed that this was pumpable, but claimed it
was not regular. There are two ways to show that L6 is nonregular. We can assume L6 is regular and
then consider LR

6 and then apply the pumping lemma, but that’s not much fun. So, the other way we
can do it is by assuming L6 is regular and intersecting it with ab∗c∗, which we know is regular. Let
f be a homomorphism such that f(a) = ε, f(b) = a, f(c) = b and then f(L6 ∩ ab∗c∗) = anbn which
is not regular. But since regular languages are closed under homomorphism, this is impossible. So,
L6 must not be regular.
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Lecture 8 (02/19/2015)
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Lecture 9 (02/24/2015)

Last time we were talking about Chomsky normal form. Recall that it is a grammar of the form
There is a theorem that says every grammar has an equivalent grammar in Chomsky normal form.
We’ll show this by walking through its construction. Consider a grammar that is composed of
S 7→ SaSbS|SbSaB|ε. This will generate all strings of even length with the same number of as
and bs. To change this into Chomsky normal form, we will add a new start variable S0 7→ S. The
second step is to transform the grammar so that the right-hand side of each rule has length at most
two. We replace each rule of the form A 7→ XU where X is any terminal or variable and U is any
string of terminals or variables, where U is a string of length ≥ 1. Basically, if we have a rule of
length 3 or more, we want to condense it.

To do this, we would change A 7→ XU into A 7→ XB and B 7→ U . This gives us S 7→ SA|SbSaS|ε,
where A 7→ aSbS. We then have So all we have done is expanded out any rules with three or more
terminals or variables and created rules with only two or fewer terminals or variables.

Third, we want to remove ε rules. The way we do this is by removing rules of the form A 7→ ε and
by adding rules B 7→
Finally, we want to remove what we call “unit rules”, rules of the form A 7→ B, and add rules
A 7→ u where B 7→ u is a rule.
Therefore, we can convert any grammar into a Chomsky normal form. Why do we do this? It’s
easier to prove things about Chomsky normal form, but also, there is an algorithm that can check
if a string is generated by a grammar. It might be inefficient, but it’s an algorithm that works.
There’s actually a faster one that Sipser mentions in other chapters, but I don’t think we’re going
to talk about that.
(Note that Sipser’s algorithm removes the ε rules second and this increases the number of rules by
a lot. This order is much better.)

Now, we’ll discuss closure properties of context-free languages.

Theorem 8. Context-free languages are closed under union.

Proof. Let g1 = (V1,Σ, R1, S1) and g2 = (V2,Σ, R1, S1) be context-free grammars that have disjoint
V . Then, we can construct a grammar g = (V,Σ, R, S) where S is a new start variable and
V = V1 ∪ V2, R = R1 ∪R2 ∪ S 7→ S1 ∪ S 7→ S2.
If we have a string w generated by g1 then this can also be generated by g and if g2 derives w then
g also derives w.
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Theorem 9. Context-free languages are closed under concatenation.

Proof. As with above, let g1 = (V1,Σ, R1, S1) and g2 = (V2,Σ, R1, S1) and construct g = (V,Σ, R, S)
with V = V1 ∪ V2, R = R1 ∪R2 ∪ S1 7→ S2, and S as a new start variable.
If we have S1 derives w1 and S2 derives w2, then S yields s1s2 which derives w1S2 and S1w1, which
is in the language of g. Conversely, if S derives some string w, then it must be the case that X
yields x1, x2 which derives w so x1 must derive some string w1 and x2 must derive some string w2

with w1 in the language of g1 and w2 in the language of g2.

Theorem 10. Context-free languages are closed under the Kleene star.

Proof. Let g1 = (V1,Σ, R1, S1) and build g = (V,Σ, R, S), with V = V1 ∪ S, S 7→ S1S|ε
Let’s see if we can prove that this works. We want to show that if w = w1 · · ·wk with wi ∈ L(g1)
then w ∈ L(g), or that S1 derives wi for all i. We have that S yields S1 · · ·S1︸ ︷︷ ︸

k times

S. Then we know

that all of the wi are derived by Sk
1

If w ∈ L(g) then either w = ε ∈ L(g∗1) or S derives S1 · · ·S1︸ ︷︷ ︸
k times

S which derives w.

What about intersection? As it turns out, context-free languages are not closed under intersection.
We can’t quite prove this yet, since we don’t know how to prove a language is not context-free. We
can consider the languages L1 = {aibjck | i = j} and L2 = {aibjck | j = k}. If we look at L1 ∩ L2,
this is not context-free.
Related to this, context-free languages are not closed under complementation. If it was closed under
complementation, this would imply closure under intersection. But it’s not, so it’s not closed under
complementation.
The last thing I want to do today is a useful closure property.

Theorem 11. The intersection of a context-free language and a regular language is context-free.

Corollary: If A is context-free and B is regular, then A−B is context-free because A−B = A∩BC .
There is a proof with the finer details on my website.
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Lecture 10 (02/26/2015)

Today we’re going to talk about a new type of pumpability. This one is called CF-pumpability and
it is a weaker condition than the pumpability that we talked about before.

We say that a language L is pumpable with pumping length p if for all words w of length at least p
w can be partitioned into w = uvxyz, vy > 0, |vxy| ≤ p, and for all i, the string uvixyiz is in the
language L.

Let’s look at a language that is CF-pumpable. Let L = {s | s#sR, s ∈ {a, b}∗} with pumping length
3. This means all strings of length 3 or more can be pumped. Consider the string sa#asR, with
s = {a, b}∗. Clearly this in the language L. Let u = s, v = a, x = #, y = a, z = sR. We can check
the conditions on the partition and notice that this is valid. Then, uvixyiz = sai#(sai)R ∈ L.

We can construct a parse tree as follows:
If we consider pumping down, then we’re replacing the larger subtree (in the parse tree) with the
smaller one. This looks like:
If we instead want to pump up, then we replace the small subtree with the larger subtree.
Why do we care about CF-pumpability? We can use it to show that a particular language is not
context-free, in the same way that we used the pumping lemma for regular languages to show
languages were non-regular. This leads us to a theorem:

Theorem 12. Any context-free language is CF-pumpable.

Let’s try an example with a language I claimed was not context-free. Show L = {anbncn} is not
context-free.

Proof. Suppose L is context-free with pumping length p. Choose w = apbpcp. Since |vxy| ≤ p, we
have three cases: vxy contains no as, vxy contains no bs, or vxy contains no cs. Then, pump up
with i = 2. Then, uv2xy2z splits into three cases:

1. uv2xy2z has more bs than as or more cs than as.

2. uv2xy2z has more as than bs or more cs than bs.

3. uv2xy2z has more bs than cs or more as than cs.

Therefore uv2xy2z 6∈ L so L is not CF-pumpable and therefore is not context-free.
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Let the language L1 = {w | w = wR ∧ w has the same number of as and bs}.

Proof. Suppose L1 is context-free with pumping length p. Consider the string w = apbpbpap. Now,
we have some possibilities. In all of these cases, if we pump down, we won’t end up with a
palindrome.

25



Lecture 11 (03/10/2015)

Let’s talk about Turing machines, invented by Alan Turing, which are the most powerful model of
computation that exists. They aren’t the most efficient, but we don’t know of any program that
we can do on a computer that we also can’t do on a Turing machine.
A Turing machine consists of a finite set of states, a one-way infinite tape, a pair of “distinguished”
states (qa and qr – whenever it enters qa, it stops and accepts the string, and whenever it enters qr,
it stops and rejects the string), and a tape head.
In a single step of computation, the symbol under the tape head is read, and the current state it is
in is evaulated, and it writes a symbol and moves to a new state and moves the head either left or
right.
When we compute a string on a Turing machine, there are three things that can happen:

1. We accept the string.

2. We reject the string.

3. The machine runs forever, also known as “looping”.

Let’s start with the example context-free language {anbncn | n ≥ 0}. We want to build a Turing
machine that recognizes this language.
Formally, a Turing machine is a 7-tuple: M = (Q,Σ,Γ, δ, q0, qa, qr) where Q,Σ,Γ are finite sets and

• Q is the set of states

• Σ is the input alphabet not containing the blank symbol t

• Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

• δ : Q× Γ 7→ Q× Γ× {L,R} is the transition function

• q0 ∈ Q is the start state

• qa ∈ Q is the accept state

• qr ∈ Q is the reject state, and qr 6= qa
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Lecture 12 (03/12/2015)

We started talking about Turing Machines (now abbreviated by TM), which are formally, 7-tuples.
We say that a Turing Machine M recognizes L if L is the language of M , and there is a special
type of TM called a decider if it never loops. These are particularly nice and useful, and we will
try to build deciders whenever we can (turns out this isn’t always possible). If M is a decider and
M recognizes L, then M decides L.
If we think about DFAs and NFAs, they were deciders, but here we have a slightly different situation
because it’s possible for a TM to loop. Last time, we gave an example of a TM, and we should
try another example this time. Let L = {w | whasthesamenumberof0sand1s} with the alphabet
Σ = {0, 1}.
Let’s first think about what we want our Turing machine to do. How do we do this?

1. Start at the beginning and scan right until we find a 0

2. Mark it, and move back to the beginning,

3. Scan right until we find a 1

4. Mark it, and move back to step 1.

First, let’s override the first symbol with a blank so that we can mark the start of the string with
a blank. In order for this to work, we need to remember the symbol we overwrote. Then, we scan
right until we find the opposite symbol, mark it, and scan back to the left until we reach the blank.
We should worry about how we’re starting and stopping, so we also need to scan past all of the
marked symbols.

I mentioned last time that single-tape TMs are equivalent to multitape TMs. Formally, a multitape
TM is the same 7-tuple M = (Q,Σ,Γ, δ, q0, qa, qr) except δ is now a function δ : Q×Γk 7→ Q×Γk×
{L,R, S}k where there are k tapes. So, if we have δ(qi, a1, · · · , ak) = (qj, b1, · · · , bk, L,R, · · · , L),
then it moves from state qi to qj, and

Theorem 13. A k-tape Turing Machine is equivalent to some 1-tape Turing Machine.

Proof. See Sipser p.177 for diagram and proof.
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