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Abstract

This paper examines whether machine learning and image analysis tools can be
used to assist art experts in the classification of unknown or disputed paintings.
Machine learning techniques have been suggested for many tasks, and are espe-
cially suited for those related to classification. We investigate the suitability of
applying machine learning techniques to the problem of classifying art by style,
time period, and other labels. Our approach is concentrated on using methods such
as multi-class SVMSs, boosted decision trees, and convolutional neural networks.
Our results show that machine learning has potential to classify artwork by style
and is powerful on a variety of data sets.

1 Introduction

Determining a paintings authenticity or classifying a previously unknown piece of artwork can be
extremely challenging. Typically, art experts thoroughly consider many different forms of evidence
before making any conclusions. Data such as correspondence from the artists lifetime and docu-
ments tracing the paintings history of ownership provide clues but not definitive answers. Other
methods, such as technical analysis of the materials used to make the piece and the method of their
preparation, study of the creative process as documented in underlayers of the painting (observed
through X-ray and infrared imaging), and visual appearance and style of the work are compared
against those of the potential artists other works. Even with experts in the field and extremely thor-
ough analysis, the result may be inconclusive, leaving art experts bamboozled. Recently, it has been
demonstrated that computational tools from image analysis and machine learning can provide an
additional source of analysis of questioned paintings [2, 3]. This assumes that a painting may have
previously unconsidered features, such as an artists brushwork, which might be found by machine
learning methods and used as an additional piece of evidence to classify and authenticate. It is clear
that there has been great focus on paintings in the field of machine learning; however, not much can
be found on determining the genre or style of artwork.

2 Related Work

Research on applications of machine learning to artwork is not too common and has only surfaced
within the last ten years. In 2008, Johnson et. al [2] presented an algorithm for verifying the authen-
ticity of a particular painting, by considering very high-resolution images of Van Gogh paintings.
In 2009, Polatkan et. al [3] examined if machine learning and image analysis could authenticate or
identify contested or unknown paintings. However, the main technique used were hidden Markov
trees (HMTs). This inspired students in Stanford University’s Machine Learning class in 2010 who
attempted to classify 1400 pieces of art by seven different artists, using multi-class SVMs.
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3 Data Collection

3.1 Dataset Creation

Originally, we intended to take our project through an entire machine learning development cycle,
so we challenged ourselves to define and create our own dataset, instead of using publicly avail-
able material. We scraped uploaded image previews of artwork from the Museum of Modern Art
(MoMA) and the art collection in the J. Paul Getty Museum. The images are publicly available on
the web and available for fair use for research purposes. We scraped over 30,000 images over the
two datasets, a significant increase over the work by Blessing and Wen, who used a dataset con-
sisting of 1400 images. While the artists of our paintings is significantly more diversified, since we
are attempting to classify by style and time period, the significantly increased training dataset size
should help with our ability to classify artwork correctly. To make training easier, we also collected
labels on the data, including the date of completion and artist nationality among others.

A significant amount of time of our project was spent on collecting and processing data — especially
because we did not have access to powerful resources to do efficient image scraping and analysis.
Also, inconsistencies across the MoMA and Getty datasets, such as invalid or filler images and
missing labels among others, created issues that made the creation and formatting of our dataset
non-trivial. Eventually, we decided to use a publically available Kaggle dataset that was discovered
later into the project.

In hindsight, it may have been a more efficient (or smarter) use of our time to look for datasets
that were standardized to begin with instead of scraping our own. Because the MoMA and Getty
datasets performed suboptimally due to scraping issues, their results were not reported. Instead, the
results using the Kaggle dataset available at kaggle.com/c/painter—by-numbers/data
are reported in section[5] This dataset contained approximately 30,000 images as well, and consisted
of a total of 25 labels which represented the style of each piece of artwork (e.g. expressionism,
romanticism, etc.).


kaggle.com/c/painter-by-numbers/data

After our decision to use the Kaggle dataset instead of polishing up our scraper and processing
utilities, we were able to focus more on the actual machine learning techniques we were interested
to test for our project, rather than needing to focus more on the software engineering oriented aspects
of our project, such as parsing labels, formatting class buckets, and optimizing the scraper itself.

3.2 Label Creation

Originally, attributes of each piece of artwork were scraped from the MoMA and Getty datasets
using our scrapers moma .py and getty.py. To create the labels for the style of art, we chose
intervals that corresponded with particular (vague) movements dependent on the time period. For
example, all pieces of artwork after 1946 were labeled as “contemporary”, all pieces of artwork
between 1891 and 1945 were labeled as “modern”, and so on.

With the Kaggle dataset, label creation was much easier in that the style of each piece of art was
explicitly defined in the dataset itself. Because of the large variety of artwork styles, we decided to
consider only the 5 most frequently occurring labels, and their corresponding pieces of artwork. The
reason for this “pruning” was mainly because of the uneven distribution of pieces of artwork within
each label, and its potential effect on overfitting the data to more frequently occurring styles. The
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most frequently occurring styles in order were the following: “impressionism”, “realism”, “roman-
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ticism”, “expressionism”, “post-impressionism”.

3.3 Image Processing

Once we had obtained the required images and their respective labels, we needed to represent the
image as a row vector in our design matrix. The most widely used approach to image encoding is
unraveling the 2-dimensional array of pixel values into a single vector of values. Of course, to create
our design matrix, we would need each image to have the same number of pixels, which lead us to
three separate approaches.

3.3.1 Aspect Ratio Preserve

One of our options is to preserve aspect ratio, but shoot for a uniform number of pixels in each image.
Doing this would mean the vectors that represent the 2-dimensional array of pixel values are equal in
length. Although this does preserve some of the original features of the painting (width/height), we
lose resolution because of downscaling. It ended up being too impractical to scale down every single
image in our dataset to be the same dimensions while preserving aspect ratios. So, we considered
two options — enforcing a uniform shape by cropping or distortion.

3.3.2 Center Crop

This first option involves taking a square of uniform size from the center of each image. While
this means all the arrays of pixel values are identical in dimension, we lose a lot of features by
simply cropping. Simply taking a square of uniform size is also difficult because all of the artwork
is different sized, and so it’s not clear how big of a square we should take. It’s possible to choose
the biggest centered square possible and scale down — this is like square scaling (discussed next).

3.3.3 Square Scaling

The last option, square scaling, was the one we ultimately used to pre-process the scraped images.
It involved scaling the image to a centered square and then scaling this square to a uniform size. In
this way the images are processed and represented as vectors with the same number of features. This
method doesn’t lose too much of the original artwork in terms of color/relative location of colors,
but it distorts shapes (both shapes of the artwork and within the artwork). This approach worked the
best for us in terms of trade-off between preserving features and ease of processing.



4 Approach

For each machine learning model (e.g. support vector machine, neural network, etc.) that was used,
k-fold validation was first used to experiment with small partitions of the training data, to avoid the
time cost of processing the entire dataset into memory. Values of k = 3,4, 5 were used, and training
using the entirety of the dataset was not used utilized until it was confirmed that our code worked to
its intended purpose.

41 SVM

Linear, polynomial, and RBF kernel support vector machines (SVMs) were used for this project. For
each SVM, principle component analysis (PCA) was used to greatly reduce the number of features
in our design matrices, such that our experiments would be computationally feasible in a reasonable
amount of time.

4.1.1 Linear

As we saw in lecture, SVMs generate linear decision boundaries by considering support vectors —
those training examples closest to the separating hyperplane. Recall from lecture that the form of
the trained linear SVM classifier in the linearly separable case is

y = sign {@0 + Z QY xi - m} .

a; >0

If our data are not linearly separable, then we can use the kernel trick to work in the feature space
®, where they are linearly separable. Specifically,

7 = sign {@0 + Z aiyiK(-Tivf)} ;

a;>0
where K (x,z) = ¢(x) - ¢(z) and ¢ is the mapping into the feature space .
The original linear SVM we use uses K (z,z) = x - z. We first used this kernel to verify that our

code was, in fact, learning. The performance of this kernel will be discussed later inE]

4.1.2 Polynomial Kernel
Polynomial kernels are defined as
K(z,z;b,p) = (b+z - 2)P,
where b and p are hyperparameters — b is a constant bias, and p is the degree of the polynomial.

We ran tests with polynomial kernels of degree 2,3,4 with varying terms for b.

4.1.3 Radial Basis Function

We also tried using a radial basis function kernel. This is defined as follows:

1
K(o.zi0) = exp (Lo 511,
g

This kernel can be intuitively thought as a measure of similarity between two examples. Unlike the
linear kernel or polynomial kernels, the feature space of the RBF kernel is infinite-dimensional — the
best representation for this function as a power series requires infinitely many terms! Furthermore,
note that we have a hyperparameter o. As |o| decreases, the function learns finer features — and is
more prone to overfitting. Typically, o is defined in terms of d, the dimensionality of each sample -
a default is normally keeping o on the same order of magnitude of d.



4.2 Boosting

In addition to investigating SVM’s, we looked into two boosting techniques: decision stumps and
decision trees. Adaboost (“adaptive-boosting”) learns by fitting multiple decision stump estimators
in a sequential manner, determining the importance of classification for specific samples by how
well they were classified by previous estimators. Gradient Tree Boosting using a similar principle
to learn, however it uses slightly more complex decision trees as its base classifier, instead of the
decision stumps of Adaboost. For both of these learners, the learning rate o can be used as a
regularization parameter - for decision trees the default value of & = 1; however, for Adaboost we
found tuning this parameter improved results, as will be discussed later. Also, n is defined as the
number of learners, which is a shared parameter. The parameter depth only pertains to decision
trees, and represents the maximum depth of each individual regression estimator.

4.3 Neural Networks

Similarly to the SVM approach, training a neural network is computationally intensive, and was
difficult with our large sample size. To solve this, parallelization methods were implemented using
TensorFlow such that training of the network was able to be run on the GPU. This led to a great
increase in speedup, and was a large factor in the feasibility of our project.

As discussed in lecture, neural networks are especially useful for pattern recognition. Because the
task of classifying pieces of artwork greatly involves finding patterns within images, we hypothe-
sized that neural networks would perform the best, compared with our other approaches in doing
this task. Furthermore, previous research has suggested that convolutional neural networks (CNNs)
are particularly performant for image feature extraction and pattern recognition. Hence, the major-
ity of the time was spent building and training a convolutional neural network, and comparing its
performance to an ordinary neural network, along with SVM methods.

We trained a convolutional neural network with many different combinations of layers (see Table[3).
We tried flattening layers, fully connected layers, and convolutional layers with ReLU (regularized
linear unit) as our activation function. In an effort to regularize, we tried both dropout and early
stopping — our results are listed in the table.

5 Results

We used 12,000 images which was was partitioned into training and validation sets. The results on
the validation set after training on the training set for each model is produced below. In addition to
the accuracy metric, we examine the F1 score in order to ensure that our model is not overfitting to
a single class.

Classifier Hyperparameter(s) | Regularization C' | Validation Accuracy | F1 score
Linear SVM None 10 0.248 0.246
Polynomial Kernel SVM b=0,p=2 10 0.303 0.292
Polynomial Kernel SVM b=0,p=3 10 0.298 0.287
Polynomial Kernel SVM b=0,p=4 10 0.297 0.282
RBF Kernel SVM o =d/0.01 1 0.276 0.142
RBF Kernel SVM o =d/0.003 1 0.359 0.352

Table 1: SVM results.

Overall, the relative performance of our SVM models performed as expected, with the linear variant
performing worst and the RBF performing best. Our initial results of > 24% accuracy on the
linear SVM shows that our model is learning, given that random guessing with 5 classes would
yield expected accuracies < 20%. At first, while training the RBF kernel SVM with the default
hyperparameters for 0 = d,C' = 1,but it massively overfit by classifying every image to a single



class. After tuning the regularization parameter C' without improvement, we realized that our o was
still too small, and increased it by a few orders of magnitude in relation to the number of features.
Intuitively, this makes sense given that there is high variability between images.

Classifier Hyperparameter(s) | Validation Accuracy | F1 Score
Gradient Tree Boost n = 5, depth 1 0.306 0.302
Gradient Tree Boost n = 100, depth 1 0.351 0.340

Adaboost Decision Stump | n = 1000, a = 0.03 0.372 0.331

Table 2: Boosting results.

We were very impressed with the performance of boosting, considering the simplicity of the decision
stumps as a base classifier. Even with only 5 base estimators, we were able to train orders of
magnitude faster that the linear and polynomial SVM’s while outperforming these models. After
increasing the estimators to 100, our boosted decision stump model was able to compete with our
RBF kernel SVM.

Classifier Layers Validation Accuracy
Fully Connected NN 1 Flattening, 2 Fully Connected 0.453
Convolutional NN 1 Convolutional, 1 Flattening, 1 Fully Connected 0.281
Convolutional NN 1 Convolutional, 1 Flattening, 2 Fully Connected 0.461
Convolutional NN 3 Convolutional, 1 Flattening, 2 Fully Connected 0.430
Convolutional NN 1 Convolutional, 1 Dropout (50%), 1 Flattening, 2 Fully Connected 0.375
Convolutional NN 1 Convolutional, 1 Dropout (25%), 1 Flattening, 2 Fully Connected 0.316

Table 3: Neural Network Results

As expected, we had most success with neural networks. We noticed that our validation accuracy
typically leveled off around 40% while the testing accuracy continued to increase to > 90%, a clear
sign of overfitting. To combat this, we included dropout layers between the fully connected portions
of our model, which prevented testing accuracy to greatly surpass validation accuracy; however,
while using dropout did prevent overfitting, it prevented our model from achieving the validation
accuracy peaks found in other models. Note that for our neural network testing, we did not work
with the F1 score, instead simply using the confusion matrix to determine the nature of errors and
ensure no one class was being overfit to.

In general, it was somewhat difficult to tune the neural network in terms of the number of layers and
combination of layers. One issue was that the data took a long time (roughly 15 minutes per run) to
load into memory, and training/testing took proportionally as long. Furthermore, we basically did
our parameter tuning by trial and error — there’s no systematic method to

6 Conclusion

From our results, we saw that neural networks, on average, greatly outperformed the SVMs and
decision stump methods that we tried. However, we should also note that the RBF kernel SVM with
well-tuned parameters along with the adaboost decision stump models were able to perform quite
decently—outperforming some of the neural networks with a suboptimal configuration of layers.
Ideally, we could have used the full +30,000 image dataset instead of our smaller 12,000 image
dataset for training, since this would probably have reduced the overfitting by allowing for more
varied examples for each class; however, we simply did not have the proper resources to run these
simulations in a feasible amount of time.




Overall, while maximum accuracies in the range of 46% seem quite low for most applications, these
metrics are quite good considering the high variability in artwork even within a single style, and the
sometimes ill-defined classification of these styles. Upon inspection of the confusion matrices for
classification, we found that our models consistently had most difficulty separating Impressionism
and Expressionism. In theory, Impressionism focuses on how light interacts with objects, with
emphasis on a broader perspective instead of details (eg ”Grainstack”, by Monet). On the other
hand, Expressionism focuses on eliciting emotion and specificity instead of a scene (eg "A Green
Thought in a Green Shade”, by Helen Frankenthaler). It is clear that the qualities defining style is
flexible and unclear at times.
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